Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 101

Similar articles for PubMed (Select 22914641)

1.

The Drosophila NKCC Ncc69 is required for normal renal tubule function.

Rodan AR, Baum M, Huang CL.

Am J Physiol Cell Physiol. 2012 Oct 15;303(8):C883-94. doi: 10.1152/ajpcell.00201.2012. Epub 2012 Aug 22.

2.

Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule.

Wu Y, Schellinger JN, Huang CL, Rodan AR.

J Biol Chem. 2014 Sep 19;289(38):26131-42. doi: 10.1074/jbc.M114.577767. Epub 2014 Aug 1.

PMID:
25086033
5.
6.

Two Inwardly Rectifying Potassium Channels, Irk1 and Irk2, Play Redundant Roles in Drosophila Renal Tubule Function.

Wu Y, Baum M, Huang CL, Rodan AR.

Am J Physiol Regul Integr Comp Physiol. 2015 Jul 29:ajpregu.00148.2015. doi: 10.1152/ajpregu.00148.2015. [Epub ahead of print]

PMID:
26224687
7.

Transcellular and paracellular pathways of transepithelial fluid secretion in Malpighian (renal) tubules of the yellow fever mosquito Aedes aegypti.

Beyenbach KW, Piermarini PM.

Acta Physiol (Oxf). 2011 Jul;202(3):387-407. doi: 10.1111/j.1748-1716.2010.02195.x. Epub 2010 Nov 16. Review.

8.

Chloride channels in stellate cells are essential for uniquely high secretion rates in neuropeptide-stimulated Drosophila diuresis.

Cabrero P, Terhzaz S, Romero MF, Davies SA, Blumenthal EM, Dow JA.

Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14301-6. doi: 10.1073/pnas.1412706111. Epub 2014 Sep 16.

9.
10.

A SLC4-like anion exchanger from renal tubules of the mosquito (Aedes aegypti): evidence for a novel role of stellate cells in diuretic fluid secretion.

Piermarini PM, Grogan LF, Lau K, Wang L, Beyenbach KW.

Am J Physiol Regul Integr Comp Physiol. 2010 Mar;298(3):R642-60. doi: 10.1152/ajpregu.00729.2009. Epub 2009 Dec 30.

11.
12.

Different effects of cyclosporine a and FK506 on potassium transport systems in MDCK cells.

Aker S, Heering P, Kinne-Saffran E, Deppe C, Grabensee B, Kinne RK.

Exp Nephrol. 2001;9(5):332-40.

PMID:
11549851
13.

Transport mechanisms of diuresis in Malpighian tubules of insects.

Beyenbach KW.

J Exp Biol. 2003 Nov;206(Pt 21):3845-56. Review.

14.

Transient receptor potential-like channels are essential for calcium signaling and fluid transport in a Drosophila epithelium.

MacPherson MR, Pollock VP, Kean L, Southall TD, Giannakou ME, Broderick KE, Dow JA, Hardie RC, Davies SA.

Genetics. 2005 Mar;169(3):1541-52. Epub 2005 Feb 3.

15.
16.

Characterization of tetraethylammonium uptake across the basolateral membrane of the Drosophila Malpighian (renal) tubule.

Rheault MR, Debicki DM, O'Donnell MJ.

Am J Physiol Regul Integr Comp Physiol. 2005 Aug;289(2):R495-R504. Epub 2005 Apr 28.

17.

Salt stress alters fluid and ion transport by Malpighian tubules of Drosophila melanogaster: evidence for phenotypic plasticity.

Naikkhwah W, O'Donnell MJ.

J Exp Biol. 2011 Oct 15;214(Pt 20):3443-54. doi: 10.1242/jeb.057828.

18.

Na+ competes with K+ in bumetanide-sensitive transport by Malpighian tubules of Rhodnius prolixus.

Ianowski JP, Christensen RJ, O'Donnell MJ.

J Exp Biol. 2004 Oct;207(Pt 21):3707-16.

19.
20.

Inorganic and organic anion transport by insect renal epithelia.

O'Donnell MJ, Ianowski JP, Linton SM, Rheault MR.

Biochim Biophys Acta. 2003 Dec 30;1618(2):194-206. Review.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk