Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 239

Related Citations for PubMed (Select 22908034)

1.

Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme.

Ranc N, Muños S, Xu J, Le Paslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M.

G3 (Bethesda). 2012 Aug;2(8):853-64. doi: 10.1534/g3.112.002667. Epub 2012 Aug 1.

2.

Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species.

Xu J, Ranc N, Muños S, Rolland S, Bouchet JP, Desplat N, Le Paslier MC, Liang Y, Brunel D, Causse M.

Theor Appl Genet. 2013 Mar;126(3):567-81. doi: 10.1007/s00122-012-2002-8. Epub 2012 Nov 4.

PMID:
23124430
3.

Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato.

Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F.

PLoS One. 2012;7(10):e48198. doi: 10.1371/journal.pone.0048198. Epub 2012 Oct 31.

4.

A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae).

Ranc N, Muños S, Santoni S, Causse M.

BMC Plant Biol. 2008 Dec 20;8:130. doi: 10.1186/1471-2229-8-130.

5.

High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding.

Sim SC, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, Chetelat RT, Hutton SF, Scott JW, Gardner RG, Panthee DR, Mutschler M, Myers JR, Francis DM.

PLoS One. 2012;7(9):e45520. doi: 10.1371/journal.pone.0045520. Epub 2012 Sep 20.

6.

Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles.

Labate JA, Robertson LD.

BMC Plant Biol. 2012 Aug 7;12:133. doi: 10.1186/1471-2229-12-133.

7.

In silico identification and experimental validation of insertion-deletion polymorphisms in tomato genome.

Yang J, Wang Y, Shen H, Yang W.

DNA Res. 2014 Aug;21(4):429-38. doi: 10.1093/dnares/dsu008. Epub 2014 Mar 11.

8.

Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding.

Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM.

BMC Genomics. 2009 Oct 9;10:466. doi: 10.1186/1471-2164-10-466.

9.

Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments.

Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S.

Theor Appl Genet. 2005 Jul;111(2):291-312. Epub 2005 May 31.

PMID:
15926074
10.
11.

Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato.

Robbins MD, Sim SC, Yang W, Van Deynze A, van der Knaap E, Joobeur T, Francis DM.

J Exp Bot. 2011 Mar;62(6):1831-45. doi: 10.1093/jxb/erq367. Epub 2010 Dec 30.

12.

Whole genome resequencing in tomato reveals variation associated with introgression and breeding events.

Causse M, Desplat N, Pascual L, Le Paslier MC, Sauvage C, Bauchet G, Bérard A, Bounon R, Tchoumakov M, Brunel D, Bouchet JP.

BMC Genomics. 2013 Nov 14;14:791. doi: 10.1186/1471-2164-14-791.

13.

Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato.

Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, Isobe S, Tabata S.

DNA Res. 2013 Dec;20(6):593-603. doi: 10.1093/dnares/dst033. Epub 2013 Jul 31.

14.

Multilocus sequence data reveal extensive departures from equilibrium in domesticated tomato (Solanum lycopersicum L.).

Labate JA, Robertson LD, Baldo AM.

Heredity (Edinb). 2009 Sep;103(3):257-67. doi: 10.1038/hdy.2009.58. Epub 2009 May 13.

15.

Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits.

Sauvage C, Segura V, Bauchet G, Stevens R, Do PT, Nikoloski Z, Fernie AR, Causse M.

Plant Physiol. 2014 Jun 3;165(3):1120-1132. [Epub ahead of print]

PMID:
24894148
16.

Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development.

Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E.

J Exp Bot. 2007;58(6):1339-49. Epub 2007 Feb 5.

17.

Sequence diversity in three tomato species: SNPs, markers, and molecular evolution.

Jiménez-Gómez JM, Maloof JN.

BMC Plant Biol. 2009 Jul 3;9:85. doi: 10.1186/1471-2229-9-85.

18.

Linkage relationships among multiple QTL for horticultural traits and late blight (P. infestans) resistance on chromosome 5 introgressed from wild tomato Solanum habrochaites.

Haggard JE, Johnson EB, St Clair DA.

G3 (Bethesda). 2013 Dec 9;3(12):2131-46. doi: 10.1534/g3.113.007195. Erratum in: G3 (Bethesda). 2014 Jan;4(1):197.

19.

Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum x S. pimpinellifolium cross.

Sun YD, Liang Y, Wu JM, Li YZ, Cui X, Qin L.

Genet Mol Res. 2012 Oct 11;11(4):3696-710. doi: 10.4238/2012.August.17.8.

20.

Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations.

Stevens R, Buret M, Duffé P, Garchery C, Baldet P, Rothan C, Causse M.

Plant Physiol. 2007 Apr;143(4):1943-53. Epub 2007 Feb 2.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk