Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Comparison of expandable and fixed interbody cages in a human cadaver corpectomy model, part I: endplate force characteristics.

Pekmezci M, Tang JA, Cheng L, Modak A, McClellan RT, Buckley JM, Ames CP.

J Neurosurg Spine. 2012 Oct;17(4):321-6. doi: 10.3171/2012.7.SPINE12171. Epub 2012 Aug 17.

PMID:
22900505
2.

Comparison of Expandable and Fixed Interbody Cages in a Human Cadaver Corpectomy Model: Fatigue Characteristics.

Pekmezci M, Tang JA, Cheng L, Modak A, McClellan RT, Buckley JM, Ames CP.

J Spinal Disord Tech. 2012 Aug 23. [Epub ahead of print]

PMID:
22925989
3.

Radiological outcomes of static vs expandable titanium cages after corpectomy: a retrospective cohort analysis of subsidence.

Lau D, Song Y, Guan Z, La Marca F, Park P.

Neurosurgery. 2013 Apr;72(4):529-39; discussion 528-9. doi: 10.1227/NEU.0b013e318282a558.

PMID:
23246824
4.

Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.

Huang P, Gupta MC, Sarigul-Klijn N, Hazelwood S.

Spine J. 2006 Nov-Dec;6(6):648-58. Epub 2006 Oct 11.

PMID:
17088195
5.

Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine.

Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F.

Spine (Phila Pa 1976). 2004 Jul 1;29(13):1413-9.

PMID:
15223931
6.

[Expandable cages: biomechanical comparison of different cages for ventral spondylodesis in the thoracolumbar spine].

Khodadadyan-Klostermann C, Schaefer J, Schleicher P, Pflugmacher R, Eindorf T, Haas NP, Kandziora F.

Chirurg. 2004 Jul;75(7):694-701. German.

PMID:
15258751
7.

Biomechanical analysis of biodegradable interbody fusion cages augmented With poly(propylene glycol-co-fumaric acid).

Kandziora F, Pflugmacher R, Kleemann R, Duda G, Wise DL, Trantolo DJ, Lewandrowski KU.

Spine (Phila Pa 1976). 2002 Aug 1;27(15):1644-51.

PMID:
12163726
8.

The effects of design and positioning of carbon fiber lumbar interbody cages and their subsidence in vertebral bodies.

Lam FC, Alkalay R, Groff MW.

J Spinal Disord Tech. 2012 Apr;25(2):116-22. doi: 10.1097/BSD.0b013e31820ef778.

PMID:
21430566
9.

Interbody device endplate engagement effects on motion segment biomechanics.

Buttermann GR, Beaubien BP, Freeman AL, Stoll JE, Chappuis JL.

Spine J. 2009 Jul;9(7):564-73. doi: 10.1016/j.spinee.2009.03.014. Epub 2009 May 20.

PMID:
19457722
10.

Biomechanical evaluation of an expandable cage in single-segment posterior lumbar interbody fusion.

Bhatia NN, Lee KH, Bui CN, Luna M, Wahba GM, Lee TQ.

Spine (Phila Pa 1976). 2012 Jan 15;37(2):E79-85. doi: 10.1097/BRS.0b013e3182226ba6.

PMID:
21629171
11.

Additional sagittal correction can be obtained when using an expandable titanium interbody device in lumbar Smith-Peterson osteotomies: a biomechanical study.

Qandah NA, Klocke NF, Synkowski JJ, Chinthakunta SR, Hussain MM, Salloum KG, Marvin EA, Bucklen BS.

Spine J. 2015 Mar 1;15(3):506-13. doi: 10.1016/j.spinee.2014.10.010. Epub 2014 Oct 12.

PMID:
25315134
12.

A two-cage reconstruction versus a single mega-cage reconstruction for lumbar interbody fusion: an experimental comparison.

Murakami H, Horton WC, Tomita K, Hutton WC.

Eur Spine J. 2004 Aug;13(5):432-40. Epub 2004 Mar 27.

13.

Influence of cage geometry on sagittal alignment in instrumented posterior lumbar interbody fusion.

Gödde S, Fritsch E, Dienst M, Kohn D.

Spine (Phila Pa 1976). 2003 Aug 1;28(15):1693-9.

PMID:
12897494
14.

Interbody device shape and size are important to strengthen the vertebra-implant interface.

Tan JS, Bailey CS, Dvorak MF, Fisher CG, Oxland TR.

Spine (Phila Pa 1976). 2005 Mar 15;30(6):638-44.

PMID:
15770178
15.

Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers.

Uribe JS, Smith DA, Dakwar E, Baaj AA, Mundis GM, Turner AW, Cornwall GB, Akbarnia BA.

J Neurosurg Spine. 2012 Nov;17(5):476-85. doi: 10.3171/2012.8.SPINE111121. Epub 2012 Aug 31.

PMID:
22938554
16.

The importance of the endplate for interbody cages in the lumbar spine.

Polikeit A, Ferguson SJ, Nolte LP, Orr TE.

Eur Spine J. 2003 Dec;12(6):556-61. Epub 2003 May 29.

17.

Biomechanical comparison of an interspinous fusion device and bilateral pedicle screw system as additional fixation for lateral lumbar interbody fusion.

Doulgeris JJ, Aghayev K, Gonzalez-Blohm SA, Lee WE 3rd, Vrionis FD.

Clin Biomech (Bristol, Avon). 2015 Feb;30(2):205-10. doi: 10.1016/j.clinbiomech.2014.10.003. Epub 2014 Oct 12.

PMID:
25577548
18.

Corpectomy cage subsidence with rectangular versus round endcaps.

Deukmedjian AR, Manwaring J, Le TV, Turner AW, Uribe JS.

J Clin Neurosci. 2014 Sep;21(9):1632-6. doi: 10.1016/j.jocn.2013.12.028. Epub 2014 May 13.

PMID:
24831343
19.

A new bone surrogate model for testing interbody device subsidence.

Au AG, Aiyangar AK, Anderson PA, Ploeg HL.

Spine (Phila Pa 1976). 2011 Jul 15;36(16):1289-96. doi: 10.1097/BRS.0b013e31820bffe9.

PMID:
21311401
20.

Bilateral implantation of low-profile interbody fusion cages: subsidence, lordosis, and fusion analysis.

Schiffman M, Brau SA, Henderson R, Gimmestad G.

Spine J. 2003 Sep-Oct;3(5):377-87.

PMID:
14588950
Items per page

Supplemental Content

Write to the Help Desk