Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan.

Burstein MT, Kyryakov P, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Leonov A, Levy S, Noohi F, Titorenko VI.

Cell Cycle. 2012 Sep 15;11(18):3443-62. doi: 10.4161/cc.21754. Epub 2012 Aug 16.

2.

Lithocholic bile acid accumulated in yeast mitochondria orchestrates a development of an anti-aging cellular pattern by causing age-related changes in cellular proteome.

Beach A, Richard VR, Bourque S, Boukh-Viner T, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Feldman R, Leonov A, Piano A, Svistkova V, Titorenko VI.

Cell Cycle. 2015;14(11):1643-56. doi: 10.1080/15384101.2015.1026493.

3.

Effect of calorie restriction on the metabolic history of chronologically aging yeast.

Goldberg AA, Bourque SD, Kyryakov P, Gregg C, Boukh-Viner T, Beach A, Burstein MT, Machkalyan G, Richard V, Rampersad S, Cyr D, Milijevic S, Titorenko VI.

Exp Gerontol. 2009 Sep;44(9):555-71. doi: 10.1016/j.exger.2009.06.001. Epub 2009 Jun 17.

PMID:
19539741
4.

Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan.

Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI.

Cell Cycle. 2014;13(21):3336-49. doi: 10.4161/15384101.2014.965063. Review.

5.

Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration.

Kyryakov P, Beach A, Richard VR, Burstein MT, Leonov A, Levy S, Titorenko VI.

Front Physiol. 2012 Jul 6;3:256. doi: 10.3389/fphys.2012.00256. eCollection 2012.

6.

Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid.

Arlia-Ciommo A, Piano A, Svistkova V, Mohtashami S, Titorenko VI.

Int J Mol Sci. 2014 Sep 18;15(9):16522-43. doi: 10.3390/ijms150916522. Review.

7.

Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.

Smith DL Jr, McClure JM, Matecic M, Smith JS.

Aging Cell. 2007 Oct;6(5):649-62. Epub 2007 Aug 15.

8.

Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast.

Choi KM, Kwon YY, Lee CK.

Exp Gerontol. 2013 Dec;48(12):1455-68. doi: 10.1016/j.exger.2013.10.001. Epub 2013 Oct 11.

PMID:
24126084
9.

Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells.

Goldberg AA, Beach A, Davies GF, Harkness TA, Leblanc A, Titorenko VI.

Oncotarget. 2011 Oct;2(10):761-82.

10.

Yeast as a model to study mitochondrial mechanisms in ageing.

Barros MH, da Cunha FM, Oliveira GA, Tahara EB, Kowaltowski AJ.

Mech Ageing Dev. 2010 Jul-Aug;131(7-8):494-502. doi: 10.1016/j.mad.2010.04.008. Epub 2010 May 5. Review.

PMID:
20450928
11.

Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

Wu Z, Liu SQ, Huang D.

PLoS One. 2013 May 17;8(5):e64448. doi: 10.1371/journal.pone.0064448. Print 2013.

12.

A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology.

Burstein MT, Titorenko VI.

Redox Biol. 2014 Jan 23;2:305-7. doi: 10.1016/j.redox.2014.01.011. eCollection 2014.

13.

DNA replication stress is a determinant of chronological lifespan in budding yeast.

Weinberger M, Feng L, Paul A, Smith DL Jr, Hontz RD, Smith JS, Vujcic M, Singh KK, Huberman JA, Burhans WC.

PLoS One. 2007 Aug 15;2(8):e748.

14.

G×G×E for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity.

Zhu CT, Ingelmo P, Rand DM.

PLoS Genet. 2014 May 15;10(5):e1004354. doi: 10.1371/journal.pgen.1004354. eCollection 2014.

15.

Maximising the yeast chronological lifespan.

Piper PW.

Subcell Biochem. 2012;57:145-59. doi: 10.1007/978-94-007-2561-4_7. Review.

PMID:
22094421
16.

Aging and the survival of quiescent and non-quiescent cells in yeast stationary-phase cultures.

Werner-Washburne M, Roy S, Davidson GS.

Subcell Biochem. 2012;57:123-43. doi: 10.1007/978-94-007-2561-4_6. Review.

PMID:
22094420
17.

An intervention resembling caloric restriction prolongs life span and retards aging in yeast.

Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM.

FASEB J. 2000 Nov;14(14):2135-7.

18.

Ammonium is a key determinant on the dietary restriction of yeast chronological aging in culture medium.

Santos J, Leitão-Correia F, Sousa MJ, Leão C.

Oncotarget. 2015 Mar 30;6(9):6511-23.

19.

Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast.

Choi KM, Lee HL, Kwon YY, Kang MS, Lee SK, Lee CK.

Biochem Biophys Res Commun. 2013 Nov 8;441(1):236-42. doi: 10.1016/j.bbrc.2013.10.049. Epub 2013 Oct 17.

PMID:
24141116
20.

DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction.

Weinberger M, Sampaio-Marques B, Ludovico P, Burhans WC.

Cell Cycle. 2013 Apr 15;12(8):1189-200. doi: 10.4161/cc.24232. Epub 2013 Mar 21.

Items per page

Supplemental Content

Write to the Help Desk