Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 102

1.

Toward quantifying the electrostatic transduction mechanism in carbon nanotube molecular sensors.

Lerner MB, Resczenski JM, Amin A, Johnson RR, Goldsmith JI, Johnson AT.

J Am Chem Soc. 2012 Sep 5;134(35):14318-21. doi: 10.1021/ja306363v. Epub 2012 Aug 22.

PMID:
22894721
[PubMed]
2.

Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering.

Ding L, Wang Z, Pei T, Zhang Z, Wang S, Xu H, Peng F, Li Y, Peng LM.

ACS Nano. 2011 Apr 26;5(4):2512-9. doi: 10.1021/nn102091h. Epub 2011 Mar 11.

PMID:
21370813
[PubMed]
3.

Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors.

Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E.

Anal Chem. 2007 Jan 15;79(2):782-7.

PMID:
17222052
[PubMed - indexed for MEDLINE]
4.

An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications.

Akbari E, Arora VK, Enzevaee A, Ahmadi MT, Saeidmanesh M, Khaledian M, Karimi H, Yusof R.

Beilstein J Nanotechnol. 2014 May 28;5:726-34. doi: 10.3762/bjnano.5.85. eCollection 2014.

PMID:
24991510
[PubMed]
Free PMC Article
5.

Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis.

Stokes P, Khondaker SI.

Nanotechnology. 2008 Apr 30;19(17):175202. doi: 10.1088/0957-4484/19/17/175202. Epub 2008 Mar 25.

PMID:
21825663
[PubMed]
6.

Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors.

Kim JP, Lee BY, Lee J, Hong S, Sim SJ.

Biosens Bioelectron. 2009 Jul 15;24(11):3372-8. doi: 10.1016/j.bios.2009.04.048. Epub 2009 May 7.

PMID:
19481922
[PubMed - indexed for MEDLINE]
7.

Apta-biosensors for nonlabeled real time detection of human IgE based on carbon nanotube field effect transistors.

Kim JP, Hong S, Sim SJ.

J Nanosci Nanotechnol. 2011 May;11(5):4182-7.

PMID:
21780424
[PubMed - indexed for MEDLINE]
8.

DC modeling and the source of flicker noise in passivated carbon nanotube transistors.

Kim S, Kim S, Janes DB, Mohammadi S, Back J, Shim M.

Nanotechnology. 2010 Sep 24;21(38):385203. doi: 10.1088/0957-4484/21/38/385203. Epub 2010 Aug 27.

PMID:
20798468
[PubMed]
9.

Local gate effect of mechanically deformed crossed carbon nanotube junction.

Qing Q, Nezich DA, Kong J, Wu Z, Liu Z.

Nano Lett. 2010 Nov 10;10(11):4715-20. doi: 10.1021/nl103084j. Epub 2010 Oct 14.

PMID:
20945929
[PubMed - indexed for MEDLINE]
10.

Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs.

Kim TH, Lee BY, Jaworski J, Yokoyama K, Chung WJ, Wang E, Hong S, Majumdar A, Lee SW.

ACS Nano. 2011 Apr 26;5(4):2824-30. doi: 10.1021/nn103324p. Epub 2011 Mar 1.

PMID:
21361351
[PubMed - indexed for MEDLINE]
11.

Global and local charge trapping in carbon nanotube field-effect transistors.

Li H, Zhang Q, Marzari N.

Nanotechnology. 2008 Apr 30;19(17):175203. doi: 10.1088/0957-4484/19/17/175203. Epub 2008 Mar 25.

PMID:
21825664
[PubMed]
12.

Carbon nanotube field-effect transistors for use as pass transistors in integrated logic gates and full subtractor circuits.

Ding L, Zhang Z, Pei T, Liang S, Wang S, Zhou W, Liu J, Peng LM.

ACS Nano. 2012 May 22;6(5):4013-9. doi: 10.1021/nn300320j. Epub 2012 Apr 13.

PMID:
22482426
[PubMed]
13.

Nanowelding of carbon nanotube-metal contacts: an effective way to control the Schottky barrier and performance of carbon nanotube based field effect transistors.

Nurbawono A, Zhang A, Cai Y, Wu Y, Feng YP, Zhang C.

J Chem Phys. 2012 May 7;136(17):174704. doi: 10.1063/1.4711082.

PMID:
22583262
[PubMed]
14.

Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors.

Paska Y, Stelzner T, Christiansen S, Haick H.

ACS Nano. 2011 Jul 26;5(7):5620-6. doi: 10.1021/nn201184c. Epub 2011 Jun 7.

PMID:
21648442
[PubMed - indexed for MEDLINE]
15.

Functionalization of single-wall carbon nanotubes with chromophores of opposite internal dipole orientation.

Zhao Y, Huang C, Kim M, Wong BM, Léonard F, Gopalan P, Eriksson MA.

ACS Appl Mater Interfaces. 2013 Oct 9;5(19):9355-61. doi: 10.1021/am4024753. Epub 2013 Sep 27.

PMID:
24060382
[PubMed - indexed for MEDLINE]
16.

Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments.

Kim JP, Lee BY, Hong S, Sim SJ.

Anal Biochem. 2008 Oct 15;381(2):193-8. doi: 10.1016/j.ab.2008.06.040. Epub 2008 Jul 9.

PMID:
18640089
[PubMed - indexed for MEDLINE]
17.

Modulating the performance of carbon nanotube field-effect transistors via Rose Bengal molecular doping.

Huang J, Datar A, Somu S, Busnaina A.

Nanotechnology. 2011 Nov 11;22(45):455202. doi: 10.1088/0957-4484/22/45/455202. Epub 2011 Oct 21.

PMID:
22019899
[PubMed]
18.

Emerging issues of connexin channels: biophysics fills the gap.

Harris AL.

Q Rev Biophys. 2001 Aug;34(3):325-472. Review. Erratum in: Q Rev Biophys 2002 Feb;35(1):109.

PMID:
11838236
[PubMed - indexed for MEDLINE]
19.

Imaging the operation of a carbon nanotube charge sensor at the nanoscale.

Brunel D, Mayer A, Mélin T.

ACS Nano. 2010 Oct 26;4(10):5978-84. doi: 10.1021/nn1012435.

PMID:
20866060
[PubMed - indexed for MEDLINE]
20.

Novel in-situ decoration of single-walled carbon nanotube transistors with metal nanoparticles.

Zhou J, Barbara P, Paranjape M.

J Nanosci Nanotechnol. 2010 Jun;10(6):3890-4.

PMID:
20355385
[PubMed]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk