Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 274

Similar articles for PubMed (Select 22871063)

1.

MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes.

Chen X, Zhu H, Chen YC, Shang Y, Cao A, Hu L, Rubloff GW.

ACS Nano. 2012 Sep 25;6(9):7948-55. Epub 2012 Aug 15.

PMID:
22871063
2.

High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper.

Lahiri I, Oh SW, Hwang JY, Cho S, Sun YK, Banerjee R, Choi W.

ACS Nano. 2010 Jun 22;4(6):3440-6. doi: 10.1021/nn100400r.

PMID:
20441185
3.

Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.

Rui X, Zhu J, Sim D, Xu C, Zeng Y, Hng HH, Lim TM, Yan Q.

Nanoscale. 2011 Nov;3(11):4752-8. doi: 10.1039/c1nr10879d. Epub 2011 Oct 11.

PMID:
21989744
4.

Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries.

Liu J, Zhou Y, Wang J, Pan Y, Xue D.

Chem Commun (Camb). 2011 Oct 7;47(37):10380-2. doi: 10.1039/c1cc13779d. Epub 2011 Aug 16.

PMID:
21845269
5.

Graphene-based three-dimensional hierarchical sandwich-type architecture for high-performance Li/S batteries.

Chen R, Zhao T, Lu J, Wu F, Li L, Chen J, Tan G, Ye Y, Amine K.

Nano Lett. 2013 Oct 9;13(10):4642-9. doi: 10.1021/nl4016683. Epub 2013 Sep 13.

PMID:
24032420
6.

Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries.

Tepavcevic S, Xiong H, Stamenkovic VR, Zuo X, Balasubramanian M, Prakapenka VB, Johnson CS, Rajh T.

ACS Nano. 2012 Jan 24;6(1):530-8. doi: 10.1021/nn203869a. Epub 2011 Dec 23.

PMID:
22148185
7.

Template-free synthesis of hierarchical vanadium-glycolate hollow microspheres and their conversion to V2O5 with improved lithium storage capability.

Pan A, Zhu T, Wu HB, Lou XW.

Chemistry. 2013 Jan 7;19(2):494-500. doi: 10.1002/chem.201203596. Epub 2012 Nov 28.

PMID:
23193070
8.

Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries.

Duan W, Hu Z, Zhang K, Cheng F, Tao Z, Chen J.

Nanoscale. 2013 Jul 21;5(14):6485-90. doi: 10.1039/c3nr01617j. Epub 2013 Jun 10.

PMID:
23749042
9.

Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.

Goyal A, Reddy AL, Ajayan PM.

Small. 2011 Jun 20;7(12):1709-13. doi: 10.1002/smll.201002051. Epub 2011 May 16.

PMID:
21574248
10.

Three-dimensionally ordered macroporous Li3V2(PO4)3/C nanocomposite cathode material for high-capacity and high-rate Li-ion batteries.

Li D, Tian M, Xie R, Li Q, Fan X, Gou L, Zhao P, Ma S, Shi Y, Yong HT.

Nanoscale. 2014 Mar 21;6(6):3302-8. doi: 10.1039/c3nr04927b. Epub 2014 Feb 10.

PMID:
24510276
11.

Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries.

Shao J, Li X, Wan Z, Zhang L, Ding Y, Zhang L, Qu Q, Zheng H.

ACS Appl Mater Interfaces. 2013 Aug 28;5(16):7671-5. doi: 10.1021/am401854v. Epub 2013 Aug 7.

PMID:
23915302
12.

Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells.

Han J, Kim H, Kim DY, Jo SM, Jang SY.

ACS Nano. 2010 Jun 22;4(6):3503-9. doi: 10.1021/nn100574g.

PMID:
20509667
13.

Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries.

Yu H, Rui X, Tan H, Chen J, Huang X, Xu C, Liu W, Yu DY, Hng HH, Hoster HE, Yan Q.

Nanoscale. 2013 Jun 7;5(11):4937-43. doi: 10.1039/c3nr00548h. Epub 2013 Apr 29.

PMID:
23629762
14.

A reversible copper extrusion-insertion electrode for rechargeable Li batteries.

Morcrette M, Rozier P, Dupont L, Mugnier E, Sannier L, Galy J, Tarascon JM.

Nat Mater. 2003 Nov;2(11):755-61. Epub 2003 Oct 26.

PMID:
14578878
15.

Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries.

Chen P, Wu F, Wang Y.

ChemSusChem. 2014 May;7(5):1407-14. doi: 10.1002/cssc.201301198. Epub 2014 Mar 19.

PMID:
24648261
16.

Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li-S batteries.

Wang L, Dong Z, Wang D, Zhang F, Jin J.

Nano Lett. 2013;13(12):6244-50. doi: 10.1021/nl403715h. Epub 2013 Nov 12.

PMID:
24205852
17.

High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

Fan Y, Zhang Q, Lu C, Xiao Q, Wang X, Tay BK.

Nanoscale. 2013 Feb 21;5(4):1503-6. doi: 10.1039/c3nr33683b.

PMID:
23334522
18.

Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries.

Wang J, Li L, Wong CL, Madhavi S.

Nanotechnology. 2012 Dec 14;23(49):495401. doi: 10.1088/0957-4484/23/49/495401. Epub 2012 Nov 13.

PMID:
23150071
19.

Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.

Jia X, Chen Z, Cui X, Peng Y, Wang X, Wang G, Wei F, Lu Y.

ACS Nano. 2012 Nov 27;6(11):9911-9. doi: 10.1021/nn303478e. Epub 2012 Nov 1.

PMID:
23046380
20.

A new strategy for synthesizing yolk-shell V₂O₅ powders with low melting temperature for high performance Li-ion batteries.

Ko YN, Chan Kang Y, Park SB.

Nanoscale. 2013 Oct 7;5(19):8899-903. doi: 10.1039/c3nr02625f. Epub 2013 Aug 5.

PMID:
23917375
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk