Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles.

Ebert D, Bhushan B.

J Colloid Interface Sci. 2012 Oct 15;384(1):182-8. doi: 10.1016/j.jcis.2012.06.070. Epub 2012 Jul 4.

PMID:
22818796
2.

Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles.

Ebert D, Bhushan B.

Langmuir. 2012 Aug 7;28(31):11391-9. doi: 10.1021/la301479c. Epub 2012 Jul 23.

PMID:
22765167
3.

One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods.

Myint MT, Hornyak GL, Dutta J.

J Colloid Interface Sci. 2014 Feb 1;415:32-8. doi: 10.1016/j.jcis.2013.10.015. Epub 2013 Oct 21.

PMID:
24267327
4.

Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.

Ebert D, Bhushan B.

J Colloid Interface Sci. 2012 Feb 15;368(1):584-91. doi: 10.1016/j.jcis.2011.09.049. Epub 2011 Sep 24.

PMID:
22062688
5.

Water-repellent coatings prepared by modification of ZnO nanoparticles.

Chakradhar RP, Dinesh Kumar V.

Spectrochim Acta A Mol Biomol Spectrosc. 2012 Aug;94:352-6. doi: 10.1016/j.saa.2012.03.079. Epub 2012 Apr 2.

PMID:
22575349
6.

Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.

Li J, Jing Z, Zha F, Yang Y, Wang Q, Lei Z.

ACS Appl Mater Interfaces. 2014 Jun 11;6(11):8868-77. doi: 10.1021/am5015937. Epub 2014 May 20.

PMID:
24807195
7.

From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion.

Cheng Z, Du M, Lai H, Zhang N, Sun K.

Nanoscale. 2013 Apr 7;5(7):2776-83. doi: 10.1039/c3nr34256e.

PMID:
23429404
8.

Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal.

Bhushan B, Her EK.

Langmuir. 2010 Jun 1;26(11):8207-17. doi: 10.1021/la904585j.

PMID:
20131881
9.

Interfacial activity of phosphonated-PEG functionalized cerium oxide nanoparticles.

Qi L, Fresnais J, Muller P, Theodoly O, Berret JF, Chapel JP.

Langmuir. 2012 Aug 7;28(31):11448-56. doi: 10.1021/la302173g. Epub 2012 Jul 26.

PMID:
22794100
10.

Synthesis of antibacterial surfaces by plasma grafting of zinc oxide based nanocomposites onto polypropylene.

de Rancourt Y, Couturaud B, Mas A, Robin JJ.

J Colloid Interface Sci. 2013 Jul 15;402:320-6. doi: 10.1016/j.jcis.2013.03.031. Epub 2013 Apr 9.

PMID:
23628200
11.

Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces.

Stanton MM, Ducker RE, MacDonald JC, Lambert CR, McGimpsey WG.

J Colloid Interface Sci. 2012 Feb 1;367(1):502-8. doi: 10.1016/j.jcis.2011.07.053. Epub 2011 Aug 3.

PMID:
22129630
12.

Reversible superhydrophobic-superhydrophilic transition of ZnO nanorod/epoxy composite films.

Liu Y, Lin Z, Lin W, Moon KS, Wong CP.

ACS Appl Mater Interfaces. 2012 Aug;4(8):3959-64. doi: 10.1021/am300778d. Epub 2012 Jul 17.

PMID:
22764733
13.

Interaction between poly(styrene-acrylic acid) latex nanoparticles and zinc oxide surfaces.

Golovko DS, Muñoz-Espí R, Wegner G.

Langmuir. 2007 Mar 27;23(7):3566-9. Epub 2007 Feb 22.

PMID:
17315902
14.

Wettability control of ZnO nanoparticles for universal applications.

Lee M, Kwak G, Yong K.

ACS Appl Mater Interfaces. 2011 Sep;3(9):3350-6. doi: 10.1021/am2004762. Epub 2011 Aug 22.

PMID:
21819107
15.

Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

Goswami D, Medda SK, De G.

ACS Appl Mater Interfaces. 2011 Sep;3(9):3440-7. doi: 10.1021/am200666m. Epub 2011 Aug 22.

PMID:
21823656
16.

Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.

Liu M, Zheng Y, Zhai J, Jiang L.

Acc Chem Res. 2010 Mar 16;43(3):368-77. doi: 10.1021/ar900205g. Review.

PMID:
19954162
17.

Petal effect: a superhydrophobic state with high adhesive force.

Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L.

Langmuir. 2008 Apr 15;24(8):4114-9. doi: 10.1021/la703821h. Epub 2008 Mar 1.

PMID:
18312016
18.

Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.

Dawood MK, Zheng H, Liew TH, Leong KC, Foo YL, Rajagopalan R, Khan SA, Choi WK.

Langmuir. 2011 Apr 5;27(7):4126-33. doi: 10.1021/la1050783. Epub 2011 Feb 28.

PMID:
21355585
19.

Preparation and characterisation of hydroxide stabilised ZnO(0001)-Zn-OH surfaces.

Valtiner M, Borodin S, Grundmeier G.

Phys Chem Chem Phys. 2007 May 21;9(19):2406-12. Epub 2007 Mar 19.

PMID:
17492104
20.

Assembly of nanoparticles at the contact line of a drying droplet under the influence of a dipped tip.

Keseroğlu K, Culha M.

J Colloid Interface Sci. 2011 Aug 1;360(1):8-14. doi: 10.1016/j.jcis.2011.04.007. Epub 2011 Apr 16.

PMID:
21546030
Items per page

Supplemental Content

Write to the Help Desk