Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 231

1.

Cellulolytic bacteria from soils in harsh environments.

Soares FL Jr, Melo IS, Dias AC, Andreote FD.

World J Microbiol Biotechnol. 2012 May;28(5):2195-203. doi: 10.1007/s11274-012-1025-2. Epub 2012 Feb 18.

PMID:
22806042
2.

Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes.

Talia P, Sede SM, Campos E, Rorig M, Principi D, Tosto D, Hopp HE, Grasso D, Cataldi A.

Res Microbiol. 2012 Apr;163(3):221-32. doi: 10.1016/j.resmic.2011.12.001. Epub 2011 Dec 13.

PMID:
22202170
3.

Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils.

Woo HL, Hazen TC, Simmons BA, DeAngelis KM.

Syst Appl Microbiol. 2014 Feb;37(1):60-7. doi: 10.1016/j.syapm.2013.10.001. Epub 2013 Nov 14.

4.

Endo- and exoglucanase activities in bacteria from mangrove sediment.

Soares Júnior FL, Dias AC, Fasanella CC, Taketani RG, de Souza Lima AO, Melo IS, Andreote FD.

Braz J Microbiol. 2014 Jan 15;44(3):969-76. eCollection 2013.

5.

Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil.

Shi W, Takano T, Liu S.

World J Microbiol Biotechnol. 2012 May;28(5):2147-57. doi: 10.1007/s11274-012-1020-7. Epub 2012 Feb 14.

PMID:
22806037
6.

Isolation and characterization of cellulose-decomposing bacteria inhabiting sawdust and coffee residue composts.

Fathallh Eida M, Nagaoka T, Wasaki J, Kouno K.

Microbes Environ. 2012;27(3):226-33. Epub 2012 Feb 22.

7.

Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.

Yang JK, Zhang JJ, Yu HY, Cheng JW, Miao LH.

Appl Microbiol Biotechnol. 2014 Feb;98(3):1449-58. doi: 10.1007/s00253-013-5130-4. Epub 2013 Jul 28.

PMID:
23893311
8.
9.

Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.

Avellaneda-Torres LM, Pulido CP, Rojas ET.

Braz J Microbiol. 2015 Mar 4;45(4):1211-20. eCollection 2014.

10.

Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost.

Sizova MV, Izquierdo JA, Panikov NS, Lynd LR.

Appl Environ Microbiol. 2011 Apr;77(7):2282-91. doi: 10.1128/AEM.01219-10. Epub 2011 Feb 11.

11.

Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen.

Schellenberger S, Kolb S, Drake HL.

Environ Microbiol. 2010 Apr;12(4):845-61. doi: 10.1111/j.1462-2920.2009.02128.x. Epub 2009 Dec 27.

PMID:
20050868
12.

A simple strategy for investigating the diversity and hydrocarbon degradation abilities of cultivable bacteria from contaminated soil.

Bučková M, Puškarová A, Chovanová K, Kraková L, Ferianc P, Pangallo D.

World J Microbiol Biotechnol. 2013 Jun;29(6):1085-98. doi: 10.1007/s11274-013-1277-5. Epub 2013 Feb 6.

PMID:
23386320
13.

[Diversity of halophilic and halotolerant bacteria isolated from non-saline soil collected from Xiaoxi National Natural Reserve, Hunan Province].

Chen Q, Liu Z, Peng Q, Huang K, He J, Zhang L, Li W, Chen Y.

Wei Sheng Wu Xue Bao. 2010 Nov;50(11):1452-9. Chinese.

PMID:
21268889
14.

Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.

Teixeira LC, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS.

ISME J. 2010 Aug;4(8):989-1001. doi: 10.1038/ismej.2010.35. Epub 2010 Apr 1.

PMID:
20357834
15.

Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica.

Soo RM, Wood SA, Grzymski JJ, McDonald IR, Cary SC.

Environ Microbiol. 2009 Mar;11(3):715-28. doi: 10.1111/j.1462-2920.2009.01859.x.

PMID:
19278453
16.

Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

Pankratov TA, Ivanova AO, Dedysh SN, Liesack W.

Environ Microbiol. 2011 Jul;13(7):1800-14. doi: 10.1111/j.1462-2920.2011.02491.x. Epub 2011 May 12.

PMID:
21564458
17.

Industrial waste based compost as a source of novel cellulolytic strains and enzymes.

Amore A, Pepe O, Ventorino V, Birolo L, Giangrande C, Faraco V.

FEMS Microbiol Lett. 2013 Feb;339(2):93-101. doi: 10.1111/1574-6968.12057. Epub 2012 Dec 17.

18.

Development of a simple cultivation method for isolating hitherto-uncultured cellulase-producing microbes.

Fujii K, Kuwahara A, Nakamura K, Yamashita Y.

Appl Microbiol Biotechnol. 2011 Aug;91(4):1183-92. doi: 10.1007/s00253-011-3376-2. Epub 2011 Jun 9.

PMID:
21656138
19.

Phylogenetic diversity of alkaline protease-producing psychrotrophic bacteria from glacier and cold environments of Lahaul and Spiti, India.

Salwan R, Gulati A, Kasana RC.

J Basic Microbiol. 2010 Apr;50(2):150-9. doi: 10.1002/jobm.200800400.

PMID:
20082368
20.

Solventogenic-cellulolytic clostridia from 4-step-screening process in agricultural waste and cow intestinal tract.

Virunanon C, Chantaroopamai S, Denduangbaripant J, Chulalaksananukul W.

Anaerobe. 2008 Apr;14(2):109-17. doi: 10.1016/j.anaerobe.2007.11.001. Epub 2007 Nov 7.

PMID:
18242107
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk