Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 203

1.

Development of a large SNP genotyping array and generation of high-density genetic maps in tomato.

Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM.

PLoS One. 2012;7(7):e40563. doi: 10.1371/journal.pone.0040563. Epub 2012 Jul 10.

2.

SNP discovery and linkage map construction in cultivated tomato.

Shirasawa K, Isobe S, Hirakawa H, Asamizu E, Fukuoka H, Just D, Rothan C, Sasamoto S, Fujishiro T, Kishida Y, Kohara M, Tsuruoka H, Wada T, Nakamura Y, Sato S, Tabata S.

DNA Res. 2010 Dec;17(6):381-91. doi: 10.1093/dnares/dsq024. Epub 2010 Nov 2.

3.

An interspecific linkage map of SSR and intronic polymorphism markers in tomato.

Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S.

Theor Appl Genet. 2010 Aug;121(4):731-9. doi: 10.1007/s00122-010-1344-3. Epub 2010 Apr 30.

4.

Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles.

Labate JA, Robertson LD.

BMC Plant Biol. 2012 Aug 7;12:133. doi: 10.1186/1471-2229-12-133.

5.

Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array.

Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans KM, Viola R, Velasco R, Dunwell JM, Troggio M, Sargent DJ.

BMC Genomics. 2012 May 25;13:203. doi: 10.1186/1471-2164-13-203.

6.

A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome.

Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M.

PLoS One. 2011;6(12):e28334. doi: 10.1371/journal.pone.0028334. Epub 2011 Dec 8.

7.

A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers.

Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR.

BMC Plant Biol. 2009 Jan 26;9:13. doi: 10.1186/1471-2229-9-13.

8.

High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding.

Sim SC, Van Deynze A, Stoffel K, Douches DS, Zarka D, Ganal MW, Chetelat RT, Hutton SF, Scott JW, Gardner RG, Panthee DR, Mutschler M, Myers JR, Francis DM.

PLoS One. 2012;7(9):e45520. doi: 10.1371/journal.pone.0045520. Epub 2012 Sep 20.

9.

Tomato breeding in the genomics era: insights from a SNP array.

Víquez-Zamora M, Vosman B, van de Geest H, Bovy A, Visser RG, Finkers R, van Heusden AW.

BMC Genomics. 2013 May 27;14:354. doi: 10.1186/1471-2164-14-354.

10.

Bin mapping of tomato diversity array (DArT) markers to genomic regions of Solanum lycopersicum × Solanum pennellii introgression lines.

Van Schalkwyk A, Wenzl P, Smit S, Lopez-Cobollo R, Kilian A, Bishop G, Hefer C, Berger DK.

Theor Appl Genet. 2012 Mar;124(5):947-56. doi: 10.1007/s00122-011-1759-5. Epub 2011 Dec 13.

11.

Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding.

Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM.

BMC Genomics. 2009 Oct 9;10:466. doi: 10.1186/1471-2164-10-466.

12.

A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome.

Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, Wen S, Holbrook CC, Guo B.

BMC Plant Biol. 2010 Jan 27;10:17. doi: 10.1186/1471-2229-10-17.

14.

Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly.

Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar'an B.

BMC Genomics. 2014 Aug 23;15:708. doi: 10.1186/1471-2164-15-708.

15.

Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley.

Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM.

BMC Genomics. 2011 Jan 4;12:4. doi: 10.1186/1471-2164-12-4.

16.

Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array.

Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M, Yang L, Grumet R, Weng Y, Sherman A, Ophir R.

PLoS One. 2015 Apr 13;10(4):e0124101. doi: 10.1371/journal.pone.0124101. eCollection 2015.

17.

High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.).

Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S.

DNA Res. 2012 Oct;19(5):357-73. doi: 10.1093/dnares/dss018. Epub 2012 Aug 3.

18.

A transcriptome map of perennial ryegrass (Lolium perenne L.).

Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam MS, Pfeifer M, Lübberstedt T, Asp T.

BMC Genomics. 2012 Apr 18;13:140. doi: 10.1186/1471-2164-13-140.

19.

Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum.

Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U.

Cell Mol Biol Lett. 2002;7(2A):583-97.

PMID:
12378264
20.

Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce.

Pavy N, Pelgas B, Beauseigle S, Blais S, Gagnon F, Gosselin I, Lamothe M, Isabel N, Bousquet J.

BMC Genomics. 2008 Jan 18;9:21. doi: 10.1186/1471-2164-9-21.

Items per page

Supplemental Content

Write to the Help Desk