Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

Transferable tight-binding potential for germanium.

Li PF, Pan BC.

J Phys Condens Matter. 2012 Aug 1;24(30):305802. doi: 10.1088/0953-8984/24/30/305802. Epub 2012 Jul 6.

PMID:
22771834
2.
3.

Platelike structures of semiconductor clusters Ge(n) (n = 40-44).

Qin W, Lu WC, Zhao LZ, Zang QJ, Chen GJ, Wang CZ, Ho KM.

J Chem Phys. 2009 Sep 28;131(12):124507. doi: 10.1063/1.3230602.

PMID:
19791894
4.

Geometric structures of Ge(n) (n=34-39) clusters.

Qin W, Lu WC, Zang QJ, Zhao LZ, Chen GJ, Wang CZ, Ho KM.

J Chem Phys. 2010 Jun 7;132(21):214509. doi: 10.1063/1.3425995.

PMID:
20528033
5.

Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory.

Slepetz B, Laszlo I, Gogotsi Y, Hyde-Volpe D, Kertesz M.

Phys Chem Chem Phys. 2010 Nov 14;12(42):14017-22. doi: 10.1039/c0cp00523a. Epub 2010 Sep 21.

PMID:
20856969
6.

A theoretical study on growth patterns of Ni-doped germanium clusters.

Wang J, Han JG.

J Phys Chem B. 2006 Apr 20;110(15):7820-7.

PMID:
16610878
7.
8.

Competition between supercluster and stuffed cage structures in medium-sized Ge(n) (n=30-39) clusters.

Wang L, Zhao J.

J Chem Phys. 2008 Jan 14;128(2):024302. doi: 10.1063/1.2821106.

PMID:
18205445
9.

Photoluminescence of oxygen-containing surface defects in germanium oxides: a theoretical study.

Zyubin AS, Mebel AM, Lin SH.

J Chem Phys. 2005 Jul 22;123(4):044701.

PMID:
16095378
10.

Polyhedral structures with three-, four-, and five fold symmetry in metal-centered ten-vertex germanium clusters.

King RB, Silaghi-Dumitrescu I, Uţă MM.

Chemistry. 2008;14(15):4542-50. doi: 10.1002/chem.200701582.

PMID:
18386281
11.

Silicon carbide nanostructures: a tight binding approach.

Patrick AD, Dong X, Allison TC, Blaisten-Barojas E.

J Chem Phys. 2009 Jun 28;130(24):244704. doi: 10.1063/1.3157282.

PMID:
19566171
12.

Experimental detection and theoretical characterization of germanium-doped lithium clusters Li(n)Ge (n = 1-7).

Ngan VT, De Haeck J, Le HT, Gopakumar G, Lievens P, Nguyen MT.

J Phys Chem A. 2009 Aug 13;113(32):9080-91. doi: 10.1021/jp9056913.

PMID:
19621914
13.

Two-, one-, and zero-dimensional elemental nanostructures based on Ge(9)-clusters.

Karttunen AJ, Fässler TF, Linnolahti M, Pakkanen TA.

Chemphyschem. 2010 Jun 21;11(9):1944-50. doi: 10.1002/cphc.200900987.

PMID:
20446334
14.

Geometries and electronic properties of the tungsten-doped germanium clusters: WGen (n = 1-17).

Wang J, Han JG.

J Phys Chem A. 2006 Nov 23;110(46):12670-7.

PMID:
17107119
15.

A nonempirical anisotropic atom-atom model potential for chlorobenzene crystals.

Day GM, Price SL.

J Am Chem Soc. 2003 Dec 31;125(52):16434-43.

PMID:
14692787
17.

Genomic design of strong direct-gap optical transition in Si/Ge core/multishell nanowires.

Zhang L, d'Avezac M, Luo JW, Zunger A.

Nano Lett. 2012 Feb 8;12(2):984-91. doi: 10.1021/nl2040892. Epub 2012 Jan 17.

PMID:
22216831
18.

Structures and energetics of neutral and ionic silicon-germanium clusters: density functional theory and coupled cluster studies.

Wang YS, Chao SD.

J Phys Chem A. 2011 Mar 10;115(9):1472-85. doi: 10.1021/jp108707d. Epub 2011 Feb 15.

PMID:
21322541
19.

Density functional theory study of nine-atom germanium clusters: effect of electron count on cluster geometry.

King RB, Silaghi-Dumitrescu I.

Inorg Chem. 2003 Oct 20;42(21):6701-8.

PMID:
14552622
20.

Comparison of the growth patterns of Si(n) and Ge(n) clusters (n = 25-33).

Zhao LZ, Lu WC, Qin W, Wang CZ, Ho KM.

J Phys Chem A. 2008 Jul 3;112(26):5815-23. doi: 10.1021/jp710937m. Epub 2008 Jun 6.

PMID:
18533643
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk