Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.
2.

Modeling the BOLD correlates of competitive neural dynamics.

Bonaiuto J, Arbib MA.

Neural Netw. 2014 Jan;49:1-10. doi: 10.1016/j.neunet.2013.09.001. Epub 2013 Sep 12.

PMID:
24076766
3.

Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition.

Lo CC, Wang CT, Wang XJ.

J Neurophysiol. 2015 Jul;114(1):650-61. doi: 10.1152/jn.00845.2013. Epub 2015 May 20.

PMID:
25995354
4.

Dynamic excitatory and inhibitory gain modulation can produce flexible, robust and optimal decision-making.

Niyogi RK, Wong-Lin K.

PLoS Comput Biol. 2013;9(6):e1003099. doi: 10.1371/journal.pcbi.1003099. Epub 2013 Jun 27.

5.

Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.

Beyeler M, Dutt ND, Krichmar JL.

Neural Netw. 2013 Dec;48:109-24. doi: 10.1016/j.neunet.2013.07.012. Epub 2013 Aug 14.

PMID:
23994510
6.

Cortical microcircuit dynamics mediating binocular rivalry: the role of adaptation in inhibition.

Theodoni P, Panagiotaropoulos TI, Kapoor V, Logothetis NK, Deco G.

Front Hum Neurosci. 2011 Nov 28;5:145. doi: 10.3389/fnhum.2011.00145. eCollection 2011.

7.

Computation with spikes in a winner-take-all network.

Oster M, Douglas R, Liu SC.

Neural Comput. 2009 Sep;21(9):2437-65. doi: 10.1162/neco.2009.07-08-829.

PMID:
19548795
8.

Versatile networks of simulated spiking neurons displaying winner-take-all behavior.

Chen Y, McKinstry JL, Edelman GM.

Front Comput Neurosci. 2013 Mar 19;7:16. doi: 10.3389/fncom.2013.00016. eCollection 2013.

9.

Dynamics of multiple-choice decision making.

You H, Wang DH.

Neural Comput. 2013 Aug;25(8):2108-45. doi: 10.1162/NECO_a_00473. Epub 2013 May 10.

PMID:
23663148
10.

Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

Schwemmer MA, Fairhall AL, Denéve S, Shea-Brown ET.

J Neurosci. 2015 Jul 15;35(28):10112-34. doi: 10.1523/JNEUROSCI.4951-14.2015.

11.

Small modifications to network topology can induce stochastic bistable spiking dynamics in a balanced cortical model.

McDonnell MD, Ward LM.

PLoS One. 2014 Apr 17;9(4):e88254. doi: 10.1371/journal.pone.0088254. eCollection 2014.

12.

Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics.

Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R.

Neural Comput. 2006 Dec;18(12):2959-93.

PMID:
17052155
13.

A large-scale neural network model of the influence of neuromodulatory levels on working memory and behavior.

Avery MC, Dutt N, Krichmar JL.

Front Comput Neurosci. 2013 Oct 3;7:133. doi: 10.3389/fncom.2013.00133. eCollection 2013.

14.

Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation.

Roxin A, Ledberg A.

PLoS Comput Biol. 2008 Mar 28;4(3):e1000046. doi: 10.1371/journal.pcbi.1000046.

15.

Efficient reinforcement learning of a reservoir network model of parametric working memory achieved with a cluster population winner-take-all readout mechanism.

Cheng Z, Deng Z, Hu X, Zhang B, Yang T.

J Neurophysiol. 2015 Dec;114(6):3296-305. doi: 10.1152/jn.00378.2015. Epub 2015 Oct 7.

PMID:
26445865
16.

Sequential activity in asymmetrically coupled winner-take-all circuits.

Mostafa H, Indiveri G.

Neural Comput. 2014 Sep;26(9):1973-2004. doi: 10.1162/NECO_a_00619. Epub 2014 May 30.

PMID:
24877737
17.

Mean-driven and fluctuation-driven persistent activity in recurrent networks.

Renart A, Moreno-Bote R, Wang XJ, Parga N.

Neural Comput. 2007 Jan;19(1):1-46.

PMID:
17134316
18.

Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State.

Lagzi F, Rotter S.

PLoS One. 2015 Sep 25;10(9):e0138947. doi: 10.1371/journal.pone.0138947. eCollection 2015.

19.

Dopaminergic neuromodulation of semantic priming in a cortical network model.

Lavigne F, Darmon N.

Neuropsychologia. 2008 Nov;46(13):3074-87. doi: 10.1016/j.neuropsychologia.2008.06.019. Epub 2008 Jul 5.

PMID:
18647615
20.

Gain modulation by an urgency signal controls the speed-accuracy trade-off in a network model of a cortical decision circuit.

Standage D, You H, Wang DH, Dorris MC.

Front Comput Neurosci. 2011 Feb 11;5:7. doi: 10.3389/fncom.2011.00007. eCollection 2011.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk