Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 118

1.

Nano-architecture and material designs for water splitting photoelectrodes.

Chen HM, Chen CK, Liu RS, Zhang L, Zhang J, Wilkinson DP.

Chem Soc Rev. 2012 Sep 7;41(17):5654-71. doi: 10.1039/c2cs35019j. Epub 2012 Jul 4.

PMID:
22763382
[PubMed]
2.

Solar-to-Chemical Energy Conversion with Photoelectrochemical Tandem Cells.

Sivula K.

Chimia (Aarau). 2013;67(3):155-61. doi: 10.2533/chimia.2013.155. Review.

PMID:
23574955
[PubMed - indexed for MEDLINE]
3.

Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.

Hisatomi T, Kubota J, Domen K.

Chem Soc Rev. 2014 Nov 21;43(22):7520-35. doi: 10.1039/c3cs60378d.

PMID:
24413305
[PubMed - in process]
4.

Branched ZnO nanostructures as building blocks of photoelectrodes for efficient solar energy conversion.

Chen W, Qiu Y, Yang S.

Phys Chem Chem Phys. 2012 Aug 21;14(31):10872-81. doi: 10.1039/c2cp41272a. Epub 2012 Jul 6.

PMID:
22772813
[PubMed]
5.

Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.

Yang HB, Miao J, Hung SF, Huo F, Chen HM, Liu B.

ACS Nano. 2014 Oct 28;8(10):10403-13. doi: 10.1021/nn503751s. Epub 2014 Oct 7.

PMID:
25268880
[PubMed - in process]
6.

Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.

Sivula K, Le Formal F, Grätzel M.

ChemSusChem. 2011 Apr 18;4(4):432-49. doi: 10.1002/cssc.201000416. Epub 2011 Mar 17. Review.

PMID:
21416621
[PubMed - indexed for MEDLINE]
7.

3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation.

Sun K, Jing Y, Li C, Zhang X, Aguinaldo R, Kargar A, Madsen K, Banu K, Zhou Y, Bando Y, Liu Z, Wang D.

Nanoscale. 2012 Mar 7;4(5):1515-21. doi: 10.1039/c2nr11952h. Epub 2012 Feb 10.

PMID:
22322530
[PubMed - indexed for MEDLINE]
8.

Ultrafast carrier dynamics in nanostructures for solar fuels.

Baxter JB, Richter C, Schmuttenmaer CA.

Annu Rev Phys Chem. 2014;65:423-47. doi: 10.1146/annurev-physchem-040513-103742. Epub 2014 Jan 9.

PMID:
24423371
[PubMed - in process]
9.

Visible light water splitting using dye-sensitized oxide semiconductors.

Youngblood WJ, Lee SH, Maeda K, Mallouk TE.

Acc Chem Res. 2009 Dec 21;42(12):1966-73. doi: 10.1021/ar9002398.

PMID:
19905000
[PubMed]
10.

Solar fuels via artificial photosynthesis.

Gust D, Moore TA, Moore AL.

Acc Chem Res. 2009 Dec 21;42(12):1890-8. doi: 10.1021/ar900209b.

PMID:
19902921
[PubMed - indexed for MEDLINE]
11.

Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting.

Zhou M, Bao J, Xu Y, Zhang J, Xie J, Guan M, Wang C, Wen L, Lei Y, Xie Y.

ACS Nano. 2014 Jul 22;8(7):7088-98. doi: 10.1021/nn501996a. Epub 2014 Jun 24.

PMID:
24911285
[PubMed - in process]
12.

Water splitting on semiconductor catalysts under visible-light irradiation.

Navarro Yerga RM, Alvarez Galván MC, del Valle F, Villoria de la Mano JA, Fierro JL.

ChemSusChem. 2009;2(6):471-85. doi: 10.1002/cssc.200900018. Review.

PMID:
19536754
[PubMed - indexed for MEDLINE]
13.

Water-splitting catalysis and solar fuel devices: artificial leaves on the move.

Joya KS, Joya YF, Ocakoglu K, van de Krol R.

Angew Chem Int Ed Engl. 2013 Sep 27;52(40):10426-37. doi: 10.1002/anie.201300136. Epub 2013 Aug 19.

PMID:
23955876
[PubMed]
14.

Progress in bismuth vanadate photoanodes for use in solar water oxidation.

Park Y, McDonald KJ, Choi KS.

Chem Soc Rev. 2013 Mar 21;42(6):2321-37. doi: 10.1039/c2cs35260e. Epub 2012 Oct 23.

PMID:
23092995
[PubMed]
15.

Tantalum-based semiconductors for solar water splitting.

Zhang P, Zhang J, Gong J.

Chem Soc Rev. 2014 Jul 7;43(13):4395-422. doi: 10.1039/c3cs60438a. Epub 2014 Mar 25.

PMID:
24668282
[PubMed - in process]
16.

A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting.

Liu C, Tang J, Chen HM, Liu B, Yang P.

Nano Lett. 2013 Jun 12;13(6):2989-92. doi: 10.1021/nl401615t. Epub 2013 May 6.

PMID:
23647159
[PubMed]
17.

Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite.

Mayer MT, Lin Y, Yuan G, Wang D.

Acc Chem Res. 2013 Jul 16;46(7):1558-66. doi: 10.1021/ar300302z. Epub 2013 Feb 20.

PMID:
23425045
[PubMed]
18.

Water oxidation at hematite photoelectrodes: the role of surface states.

Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J.

J Am Chem Soc. 2012 Mar 7;134(9):4294-302. doi: 10.1021/ja210755h. Epub 2012 Feb 23.

PMID:
22303953
[PubMed - indexed for MEDLINE]
19.

Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures.

Qiu Y, Leung SF, Zhang Q, Hua B, Lin Q, Wei Z, Tsui KH, Zhang Y, Yang S, Fan Z.

Nano Lett. 2014;14(4):2123-9. doi: 10.1021/nl500359e. Epub 2014 Mar 11.

PMID:
24601797
[PubMed - in process]
20.

Biomimetic and microbial approaches to solar fuel generation.

Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjö K, Styring S, Sundström V, Hammarström L.

Acc Chem Res. 2009 Dec 21;42(12):1899-909. doi: 10.1021/ar900127h.

PMID:
19757805
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk