Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Two GH10 endo-xylanases from Myceliophthora thermophila C1 with and without cellulose binding module act differently towards soluble and insoluble xylans.

van Gool MP, van Muiswinkel GC, Hinz SW, Schols HA, Sinitsyn AP, Gruppen H.

Bioresour Technol. 2012 Sep;119:123-32. doi: 10.1016/j.biortech.2012.05.117. Epub 2012 May 29.

PMID:
22728192
2.

Two novel GH11 endo-xylanases from Myceliophthora thermophila C1 act differently toward soluble and insoluble xylans.

van Gool MP, van Muiswinkel GC, Hinz SW, Schols HA, Sinitsyn AP, Gruppen H.

Enzyme Microb Technol. 2013 Jun 10;53(1):25-32. doi: 10.1016/j.enzmictec.2013.03.019. Epub 2013 Apr 2.

PMID:
23683701
3.

Factors affecting xylanase functionality in the degradation of arabinoxylans.

Berrin JG, Juge N.

Biotechnol Lett. 2008 Jul;30(7):1139-50. doi: 10.1007/s10529-008-9669-6. Epub 2008 Mar 5. Review.

PMID:
18320143
4.

Structure and function of a family 10 beta-xylanase chimera of Streptomyces olivaceoviridis E-86 FXYN and Cellulomonas fimi Cex.

Kaneko S, Ichinose H, Fujimoto Z, Kuno A, Yura K, Go M, Mizuno H, Kusakabe I, Kobayashi H.

J Biol Chem. 2004 Jun 18;279(25):26619-26. Epub 2004 Apr 12.

5.

Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases.

Pell G, Szabo L, Charnock SJ, Xie H, Gloster TM, Davies GJ, Gilbert HJ.

J Biol Chem. 2004 Mar 19;279(12):11777-88. Epub 2003 Dec 11.

6.

Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families.

Pollet A, Delcour JA, Courtin CM.

Crit Rev Biotechnol. 2010 Sep;30(3):176-91. doi: 10.3109/07388551003645599. Review.

PMID:
20225927
7.

Microbial xylanases: engineering, production and industrial applications.

Juturu V, Wu JC.

Biotechnol Adv. 2012 Nov-Dec;30(6):1219-27. doi: 10.1016/j.biotechadv.2011.11.006. Epub 2011 Nov 25. Review.

PMID:
22138412
8.

Truncated derivatives of a multidomain thermophilic glycosyl hydrolase family 10 xylanase from Thermotoga maritima reveal structure related activity profiles and substrate hydrolysis patterns.

Verjans P, Dornez E, Segers M, Van Campenhout S, Bernaerts K, Beliën T, Delcour JA, Courtin CM.

J Biotechnol. 2010 Jan 15;145(2):160-7. doi: 10.1016/j.jbiotec.2009.10.014. Epub 2009 Oct 31.

PMID:
19883701
9.

Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A.

Bolam DN, Xie H, White P, Simpson PJ, Hancock SM, Williamson MP, Gilbert HJ.

Biochemistry. 2001 Feb 27;40(8):2468-77.

PMID:
11327868
10.

The N-terminal family 22 carbohydrate-binding module of xylanase 10B of Clostridium themocellum is not a thermostabilizing domain.

Dias FM, Goyal A, Gilbert HJ, José A M Prates, Ferreira LM, Fontes CM.

FEMS Microbiol Lett. 2004 Sep 1;238(1):71-8.

11.

GH11 xylanases: Structure/function/properties relationships and applications.

Paës G, Berrin JG, Beaugrand J.

Biotechnol Adv. 2012 May-Jun;30(3):564-92. doi: 10.1016/j.biotechadv.2011.10.003. Epub 2011 Oct 20. Review.

PMID:
22067746
12.

Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose.

Najmudin S, Pinheiro BA, Prates JA, Gilbert HJ, Romão MJ, Fontes CM.

J Struct Biol. 2010 Dec;172(3):353-62. doi: 10.1016/j.jsb.2010.07.009. Epub 2010 Aug 1.

PMID:
20682344
13.

Purification, crystallization and crystallographic analysis of Clostridium thermocellum endo-1,4-beta-D-xylanase 10B in complex with xylohexaose.

Najmudin S, Pinheiro BA, Romão MJ, Prates JA, Fontes CM.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Aug 1;64(Pt 8):715-8. doi: 10.1107/S1744309108019696. Epub 2008 Jul 5.

14.

Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases.

Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE.

J Mol Biol. 2008 Feb 1;375(5):1293-305. Epub 2007 Nov 12.

PMID:
18078955
16.
17.

A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase.

Ludwiczek ML, Heller M, Kantner T, McIntosh LP.

J Mol Biol. 2007 Oct 19;373(2):337-54. Epub 2007 Aug 9.

PMID:
17822716
18.

Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains.

McKee LS, Peña MJ, Rogowski A, Jackson A, Lewis RJ, York WS, Krogh KB, Viksø-Nielsen A, Skjøt M, Gilbert HJ, Marles-Wright J.

Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6537-42. doi: 10.1073/pnas.1117686109. Epub 2012 Apr 6.

19.

Improvement of binding activity of xylan-binding domain by amino acid substitution.

Sakata T, Takakura J, Miyakubo H, Osada Y, Wada R, Takahashi H, Yatsunami R, Fukui T, Nakamura S.

Nucleic Acids Symp Ser (Oxf). 2006;(50):253-4.

20.

Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases.

Biely P, Mislovicová D, Toman R.

Anal Biochem. 1985 Jan;144(1):142-6.

PMID:
3838626
Items per page

Supplemental Content

Write to the Help Desk