Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Liquid slip on a nanostructured surface.

Lee DJ, Cho KY, Jang S, Song YS, Youn JR.

Langmuir. 2012 Jul 17;28(28):10488-94. doi: 10.1021/la302264t. Epub 2012 Jul 5.

PMID:
22717057
2.

The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.

Jing D, Bhushan B.

J Colloid Interface Sci. 2015 Sep 15;454:152-79. doi: 10.1016/j.jcis.2015.05.015. Epub 2015 May 15. Review.

PMID:
26021432
3.

The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.

Li Y, Bhushan B.

Soft Matter. 2015 Oct 14;11(38):7680-95. doi: 10.1039/c5sm00763a.

PMID:
26303742
4.

Contact line motion in confined liquid-gas systems: Slip versus phase transition.

Xu X, Qian T.

J Chem Phys. 2010 Nov 28;133(20):204704. doi: 10.1063/1.3506886.

PMID:
21133449
5.

A method to determine zeta potential and Navier slip coefficient of microchannels.

Park HM.

J Colloid Interface Sci. 2010 Jul 1;347(1):132-41. doi: 10.1016/j.jcis.2010.03.024. Epub 2010 Mar 15.

PMID:
20362996
6.

Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls.

Lee C, Kim CJ.

Langmuir. 2009 Nov 3;25(21):12812-8. doi: 10.1021/la901824d.

PMID:
19610627
7.

Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.

Voronov RS, Papavassiliou DV, Lee LL.

J Chem Phys. 2006 May 28;124(20):204701.

PMID:
16774358
8.

Dependence between velocity slip and temperature jump in shear flows.

Sun J, Wang W, Wang HS.

J Chem Phys. 2013 Jun 21;138(23):234703. doi: 10.1063/1.4810810.

PMID:
23802972
9.

On using the levelling of the free surface of a Newtonian fluid to measure viscosity and Navier slip length.

Gilormini P, Teyssèdre H.

Proc Math Phys Eng Sci. 2013 Dec 8;469(2160):20130457.

10.

Nanofluidics of thin polymer films: linking the slip boundary condition at solid-liquid interfaces to macroscopic pattern formation and microscopic interfacial properties.

McGraw JD, Bäumchen O, Klos M, Haefner S, Lessel M, Backes S, Jacobs K.

Adv Colloid Interface Sci. 2014 Aug;210:13-20. doi: 10.1016/j.cis.2014.03.010. Epub 2014 Apr 12.

PMID:
24780402
11.

Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.

Tanvir Ahmmed KM, Kietzig AM.

Soft Matter. 2016 Jun 14;12(22):4912-22. doi: 10.1039/c6sm00436a. Epub 2016 May 5.

PMID:
27146256
12.

Electroviscous effect on fluid drag in a microchannel with large zeta potential.

Jing D, Bhushan B.

Beilstein J Nanotechnol. 2015 Nov 24;6:2207-16. doi: 10.3762/bjnano.6.226. eCollection 2015.

13.

Boundary conditions at the liquid-liquid interface in the presence of surfactants.

Hu Y, Zhang X, Wang W.

Langmuir. 2010 Jul 6;26(13):10693-702. doi: 10.1021/la101025h.

PMID:
20507080
14.

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.

Pan Y, Bhushan B, Zhao X.

Beilstein J Nanotechnol. 2014 Jul 15;5:1042-65. doi: 10.3762/bjnano.5.117. eCollection 2014. Review.

15.

Slip flow of diverse liquids on robust superomniphobic surfaces.

Wu Y, Cai M, Li Z, Song X, Wang H, Pei X, Zhou F.

J Colloid Interface Sci. 2014 Jan 15;414:9-13. doi: 10.1016/j.jcis.2013.09.041. Epub 2013 Oct 5.

PMID:
24231078
16.

Surfactant solutions and porous substrates: spreading and imbibition.

Starov VM.

Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27.

PMID:
15571660
17.

Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface.

Choi CH, Kim CJ.

Phys Rev Lett. 2006 Feb 17;96(6):066001. Epub 2006 Feb 16.

PMID:
16606011
18.

Friction and slip at the solid/liquid interface in vibrational systems.

Huang K, Szlufarska I.

Langmuir. 2012 Dec 18;28(50):17302-12. doi: 10.1021/la303381z. Epub 2012 Dec 4.

PMID:
23157613
19.

Nanoscale discontinuities at the boundary of flowing liquids: a look into structure.

Wolff M, Gutfreund P, Rühm A, Akgun B, Zabel H.

J Phys Condens Matter. 2011 May 11;23(18):184102. doi: 10.1088/0953-8984/23/18/184102. Epub 2011 Apr 20.

PMID:
21508468
20.

Molecular theory of hydrodynamic boundary conditions in nanofluidics.

Kobryn AE, Kovalenko A.

J Chem Phys. 2008 Oct 7;129(13):134701. doi: 10.1063/1.2972978.

PMID:
19045110
Items per page

Supplemental Content

Write to the Help Desk