Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 323

1.

Complex Förster energy transfer interactions between semiconductor quantum dots and a redox-active osmium assembly.

Stewart MH, Huston AL, Scott AM, Efros AL, Melinger JS, Gemmill KB, Trammell SA, Blanco-Canosa JB, Dawson PE, Medintz IL.

ACS Nano. 2012 Jun 26;6(6):5330-47. doi: 10.1021/nn301177h. Epub 2012 Jun 7.

PMID:
22671940
2.

Competition between Förster resonance energy transfer and electron transfer in stoichiometrically assembled semiconductor quantum dot-fullerene conjugates.

Stewart MH, Huston AL, Scott AM, Oh E, Algar WR, Deschamps JR, Susumu K, Jain V, Prasuhn DE, Blanco-Canosa J, Dawson PE, Medintz IL.

ACS Nano. 2013 Oct 22;7(10):9489-505. doi: 10.1021/nn403872x. Epub 2013 Oct 15.

PMID:
24128175
3.

Bio serves nano: biological light-harvesting complex as energy donor for semiconductor quantum dots.

Werwie M, Xu X, Haase M, Basché T, Paulsen H.

Langmuir. 2012 Apr 3;28(13):5810-8. doi: 10.1021/la204970a. Epub 2012 Mar 26.

PMID:
22401299
4.

On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles.

Pons T, Medintz IL, Sapsford KE, Higashiya S, Grimes AF, English DS, Mattoussi H.

Nano Lett. 2007 Oct;7(10):3157-64. Epub 2007 Sep 11.

PMID:
17845066
5.

Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes.

Scott AM, Algar WR, Stewart MH, Trammell SA, Blanco-Canosa JB, Dawson PE, Deschamps JR, Goswami R, Oh E, Huston AL, Medintz IL.

J Phys Chem C Nanomater Interfaces. 2014 May 1;118(17):9239-9250. Epub 2014 Apr 22.

6.

Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.

Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H.

J Am Chem Soc. 2004 Jan 14;126(1):301-10.

PMID:
14709096
7.

Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge.

Medintz IL, Pons T, Trammell SA, Grimes AF, English DS, Blanco-Canosa JB, Dawson PE, Mattoussi H.

J Am Chem Soc. 2008 Dec 10;130(49):16745-56. doi: 10.1021/ja805456x.

8.

Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes.

Medintz IL, Farrell D, Susumu K, Trammell SA, Deschamps JR, Brunel FM, Dawson PE, Mattoussi H.

Anal Chem. 2009 Jun 15;81(12):4831-9. doi: 10.1021/ac900412j.

PMID:
19445483
9.

Coupling of different isolated photosynthetic light harvesting complexes and CdSe/ZnS nanocrystals via Förster resonance energy transfer.

Schmitt FJ, Maksimov EG, Hätti P, Weißenborn J, Jeyasangar V, Razjivin AP, Paschenko VZ, Friedrich T, Renger G.

Biochim Biophys Acta. 2012 Aug;1817(8):1461-70. doi: 10.1016/j.bbabio.2012.03.030. Epub 2012 Apr 4.

10.

Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.

Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, Dawson PE, Hildebrandt N, Medintz IL.

J Am Chem Soc. 2012 Jan 25;134(3):1876-91. doi: 10.1021/ja210162f. Epub 2012 Jan 5.

PMID:
22220737
11.

Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy.

Charbonnière LJ, Hildebrandt N, Ziessel RF, Löhmannsröben HG.

J Am Chem Soc. 2006 Oct 4;128(39):12800-9.

PMID:
17002375
12.

Multiplexed energy transfer mechanisms in a dual-function quantum dot for zinc and manganese.

Ruedas-Rama MJ, Hall EA.

Analyst. 2009 Jan;134(1):159-69. doi: 10.1039/b814879a. Epub 2008 Nov 24.

PMID:
19082188
13.

Self-assembled quantum dot-sensitized multivalent DNA photonic wires.

Boeneman K, Prasuhn DE, Blanco-Canosa JB, Dawson PE, Melinger JS, Ancona M, Stewart MH, Susumu K, Huston A, Medintz IL.

J Am Chem Soc. 2010 Dec 29;132(51):18177-90. doi: 10.1021/ja106465x. Epub 2010 Dec 8.

PMID:
21141858
14.

An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots.

Samanta A, Walper SA, Susumu K, Dwyer CL, Medintz IL.

Nanoscale. 2015 May 7;7(17):7603-14. doi: 10.1039/c5nr00828j.

PMID:
25804284
15.

Ultrafast dynamics of excitons in semiconductor quantum dots on a plasmonically active nano-structured silver film.

Batabyal S, Makhal A, Das K, Raychaudhuri AK, Pal SK.

Nanotechnology. 2011 May 13;22(19):195704. doi: 10.1088/0957-4484/22/19/195704. Epub 2011 Mar 23. Erratum in: Nanotechnology. 2012 Jul 11;23(27):279501.

PMID:
21430325
16.

Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.

Zhu H, Song N, Lian T.

J Am Chem Soc. 2011 Jun 8;133(22):8762-71. doi: 10.1021/ja202752s. Epub 2011 May 17.

PMID:
21534569
17.

Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors.

Chou KF, Dennis AM.

Sensors (Basel). 2015 Jun 5;15(6):13288-325. doi: 10.3390/s150613288. Review.

18.

Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting.

Jin S, Son HJ, Farha OK, Wiederrecht GP, Hupp JT.

J Am Chem Soc. 2013 Jan 23;135(3):955-8. doi: 10.1021/ja3097114. Epub 2013 Jan 14.

PMID:
23293894
19.

Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects.

Su XR, Zhang W, Zhou L, Peng XN, Wang QQ.

Opt Express. 2010 Mar 29;18(7):6516-21. doi: 10.1364/OE.18.006516.

PMID:
20389674
20.

Quantum dots and fluorescent protein FRET-based biosensors.

Boeneman K, Delehanty JB, Susumu K, Stewart MH, Deschamps JR, Medintz IL.

Adv Exp Med Biol. 2012;733:63-74. doi: 10.1007/978-94-007-2555-3_7.

PMID:
22101713
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk