Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues.

Rasila TS, Vihinen M, Paulin L, Haapa-Paananen S, Savilahti H.

PLoS One. 2012;7(5):e37922. doi: 10.1371/journal.pone.0037922. Epub 2012 May 29.

2.

Domain III function of Mu transposase analysed by directed placement of subunits within the transpososome.

Mariconda S, Namgoong SY, Yoon KH, Jiang H, Harshey RM.

J Biosci. 2000 Dec;25(4):347-60.

3.

Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination.

Krementsova E, Giffin MJ, Pincus D, Baker TA.

J Biol Chem. 1998 Nov 20;273(47):31358-65.

4.

Solution structure of the Mu end DNA-binding ibeta subdomain of phage Mu transposase: modular DNA recognition by two tethered domains.

Schumacher S, Clubb RT, Cai M, Mizuuchi K, Clore GM, Gronenborn AM.

EMBO J. 1997 Dec 15;16(24):7532-41.

5.

Comparative sequence analysis of IS50/Tn5 transposase.

Reznikoff WS, Bordenstein SR, Apodaca J.

J Bacteriol. 2004 Dec;186(24):8240-7.

6.

DNA repair by the cryptic endonuclease activity of Mu transposase.

Choi W, Harshey RM.

Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10014-9. doi: 10.1073/pnas.0912615107. Epub 2010 Feb 18.

7.

Sequence and positional requirements for DNA sites in a mu transpososome.

Goldhaber-Gordon I, Early MH, Gray MK, Baker TA.

J Biol Chem. 2002 Mar 8;277(10):7703-12. Epub 2001 Dec 27.

8.

Altering the DNA-binding specificity of Mu transposase in vitro.

Namgoong SY, Sankaralingam S, Harshey RM.

Nucleic Acids Res. 1998 Aug 1;26(15):3521-7.

10.

The μ transpososome structure sheds light on DDE recombinase evolution.

Montaño SP, Pigli YZ, Rice PA.

Nature. 2012 Nov 15;491(7424):413-7. doi: 10.1038/nature11602. Epub 2012 Nov 7.

11.

Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes.

Sinzelle L, Kapitonov VV, Grzela DP, Jursch T, Jurka J, Izsvák Z, Ivics Z.

Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4715-20. doi: 10.1073/pnas.0707746105. Epub 2008 Mar 13.

13.

Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase.

Clubb RT, Schumacher S, Mizuuchi K, Gronenborn AM, Clore GM.

J Mol Biol. 1997 Oct 17;273(1):19-25.

PMID:
9367742
14.

DNA recognition sites activate MuA transposase to perform transposition of non-Mu DNA.

Goldhaber-Gordon I, Williams TL, Baker TA.

J Biol Chem. 2002 Mar 8;277(10):7694-702. Epub 2001 Dec 27.

15.

N-terminal domain-deleted mu transposase exhibits increased transposition activity with low target site preference in modified buffers.

Kim YC, Morrison SL.

J Mol Microbiol Biotechnol. 2009;17(1):30-40. doi: 10.1159/000178019. Epub 2008 Nov 25.

PMID:
19033677
16.

The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries.

Guérillot R, Siguier P, Gourbeyre E, Chandler M, Glaser P.

Genome Biol Evol. 2014 Feb;6(2):260-72. doi: 10.1093/gbe/evu010.

17.

The wing of the enhancer-binding domain of Mu phage transposase is flexible and is essential for efficient transposition.

Clubb RT, Mizuuchi M, Huth JR, Omichinski JG, Savilahti H, Mizuuchi K, Clore GM, Gronenborn AM.

Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1146-50.

18.

The helix-turn-helix motif of bacterial insertion sequence IS911 transposase is required for DNA binding.

Rousseau P, Gueguen E, Duval-Valentin G, Chandler M.

Nucleic Acids Res. 2004 Feb 23;32(4):1335-44. Print 2004.

19.
20.

Presence of a characteristic D-D-E motif in IS1 transposase.

Ohta S, Tsuchida K, Choi S, Sekine Y, Shiga Y, Ohtsubo E.

J Bacteriol. 2002 Nov;184(22):6146-54.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk