Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 174

1.

KCa 3.1 channels maintain endothelium-dependent vasodilatation in isolated perfused kidneys of spontaneously hypertensive rats after chronic inhibition of NOS.

Simonet S, Isabelle M, Bousquenaud M, Clavreul N, Félétou M, Vayssettes-Courchay C, Verbeuren TJ.

Br J Pharmacol. 2012 Oct;167(4):854-67. doi: 10.1111/j.1476-5381.2012.02062.x.

PMID:
22646737
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Upregulation of intermediate calcium-activated potassium channels counterbalance the impaired endothelium-dependent vasodilation in stroke-prone spontaneously hypertensive rats.

Giachini FR, Carneiro FS, Lima VV, Carneiro ZN, Dorrance A, Webb RC, Tostes RC.

Transl Res. 2009 Oct;154(4):183-93. doi: 10.1016/j.trsl.2009.07.003. Epub 2009 Jul 31.

PMID:
19766962
[PubMed - indexed for MEDLINE]
Free PMC Article
3.

Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.

Jiang F, Dusting GJ.

Br J Pharmacol. 2001 Apr;132(7):1558-64.

PMID:
11264250
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

EDHF-mediated rapid restoration of hypotensive response to acetylcholine after chronic, but not acute, nitric oxide synthase inhibition in rats.

Desai KM, Gopalakrishnan V, Hiebert LM, McNeill JR, Wilson TW.

Eur J Pharmacol. 2006 Sep 28;546(1-3):120-6. Epub 2006 Jul 5.

PMID:
16876156
[PubMed - indexed for MEDLINE]
5.

Effects of endothelium-derived hyperpolarizing factor and nitric oxide on endothelial function in femoral resistance arteries of spontaneously hypertensive rats.

Mori Y, Ohyanagi M, Koida S, Ueda A, Ishiko K, Iwasaki T.

Hypertens Res. 2006 Mar;29(3):187-95.

PMID:
16755154
[PubMed - indexed for MEDLINE]
6.

Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo.

Mori A, Suzuki S, Sakamoto K, Nakahara T, Ishii K.

Naunyn Schmiedebergs Arch Pharmacol. 2011 Jan;383(1):27-34. doi: 10.1007/s00210-010-0570-1. Epub 2010 Oct 27.

PMID:
20978884
[PubMed - indexed for MEDLINE]
7.

Involvement of K+ channel permeability changes in the L-NAME and indomethacin resistant part of adenosine-5'-O-(2-thiodiphosphate)-induced relaxation of pancreatic vascular bed.

Hillaire-Buys D, Chapal J, Linck N, Blayac JP, Petit P, Loubatières-Mariani MM.

Br J Pharmacol. 1998 May;124(1):149-56.

PMID:
9630354
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats.

Kimura K, Nishio I.

Scand J Clin Lab Invest. 1999 May;59(3):199-204.

PMID:
10400164
[PubMed - indexed for MEDLINE]
9.
10.

Ramipril therapy improves arterial dilation in experimental hypertension.

Hutri-Kähönen N, Kähönen M, Tolvanen JP, Wu X, Sallinen K, Pörsti I.

Cardiovasc Res. 1997 Jan;33(1):188-95.

PMID:
9059543
[PubMed - indexed for MEDLINE]
Free Article
11.

A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.

White R, Hiley CR.

Br J Pharmacol. 1997 Dec;122(8):1573-84.

PMID:
9422801
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

Reduced effects of endothelium-derived hyperpolarizing factor in ocular ciliary arteries from spontaneous hypertensive rats.

Dong Y, Watabe H, Cui J, Abe S, Sato N, Ishikawa H, Yoshitomi T.

Exp Eye Res. 2010 Feb;90(2):324-9. doi: 10.1016/j.exer.2009.11.009. Epub 2009 Nov 24.

PMID:
19941853
[PubMed - indexed for MEDLINE]
13.

Effect of hypercholesterolemia on Ca(2+)-dependent K(+) channel-mediated vasodilatation in vivo.

Jeremy RW, McCarron H.

Am J Physiol Heart Circ Physiol. 2000 Oct;279(4):H1600-8.

PMID:
11009446
[PubMed - indexed for MEDLINE]
Free Article
14.

Neuronal NO mediates cerebral vasodilator responses to K+ in hypertensive rats.

Chrissobolis S, Ziogas J, Anderson CR, Chu Y, Faraci FM, Sobey CG.

Hypertension. 2002 Apr;39(4):880-5.

PMID:
11967243
[PubMed - indexed for MEDLINE]
Free Article
15.

Endothelium-derived relaxing factor-mediated vasodilation in mouse mesenteric vascular beds.

Fujiwara H, Wake Y, Hashikawa-Hobara N, Makino K, Takatori S, Zamami Y, Kitamura Y, Kawasaki H.

J Pharmacol Sci. 2012;118(3):373-81.

PMID:
22450195
[PubMed - indexed for MEDLINE]
Free Article
16.

Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF.

Wang X, Loutzenhiser R.

Am J Physiol Renal Physiol. 2002 Jan;282(1):F124-32. Epub 2003 Mar 11.

PMID:
11739120
[PubMed - indexed for MEDLINE]
Free Article
17.

Contributions of endothelium-derived relaxing factors to control of hindlimb blood flow in the mouse in vivo.

Fitzgerald SM, Bashari H, Cox JA, Parkington HC, Evans RG.

Am J Physiol Heart Circ Physiol. 2007 Aug;293(2):H1072-82. Epub 2007 Apr 27.

PMID:
17468338
[PubMed - indexed for MEDLINE]
Free Article
18.

Endothelium-derived relaxing, contracting and hyperpolarizing factors of mesenteric arteries of hypertensive and normotensive rats.

Sunano S, Watanabe H, Tanaka S, Sekiguchi F, Shimamura K.

Br J Pharmacol. 1999 Feb;126(3):709-16.

PMID:
10188983
[PubMed - indexed for MEDLINE]
Free PMC Article
19.

Nitric oxide in mesenteric vascular reactivity: a comparison between rats with normotension and hypertension.

Chang HR, Lee RP, Wu CY, Chen HI.

Clin Exp Pharmacol Physiol. 2002 Apr;29(4):275-80.

PMID:
11985535
[PubMed - indexed for MEDLINE]
20.

Contribution of endothelium derived relaxing factors to acetylcholine induced vasodilatation in the rat kidney.

Vargas F, Sabio JM, Luna JD.

Cardiovasc Res. 1994 Sep;28(9):1373-7.

PMID:
7954648
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk