Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 108

Similar articles for PubMed (Select 22642831)

1.

Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1.

Adachi MS, Taylor AB, Hart PJ, Fitzpatrick PF.

Biochemistry. 2012 Jun 19;51(24):4888-97. doi: 10.1021/bi300517s. Epub 2012 Jun 5.

2.

Analyzing the catalytic role of active site residues in the Fe-type nitrile hydratase from Comamonas testosteroni Ni1.

Martinez S, Wu R, Krzywda K, Opalka V, Chan H, Liu D, Holz RC.

J Biol Inorg Chem. 2015 Jul;20(5):885-94. doi: 10.1007/s00775-015-1273-3. Epub 2015 Jun 16.

PMID:
26077812
3.

Dissection of the water cavity of yeast thioredoxin 1: the effect of a hydrophobic residue in the cavity.

Iqbal A, Gomes-Neto F, Myiamoto CA, Valente AP, Almeida FC.

Biochemistry. 2015 Apr 21;54(15):2429-42. doi: 10.1021/acs.biochem.5b00082. Epub 2015 Apr 9.

PMID:
25830254
4.

Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution.

Cervelli M, Polticelli F, Angelucci E, Di Muzio E, Stano P, Mariottini P.

Amino Acids. 2015 May;47(5):949-61. doi: 10.1007/s00726-015-1924-2. Epub 2015 Feb 6.

PMID:
25655384
5.

Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

Gannavaram S, Sirin S, Sherman W, Gadda G.

Biochemistry. 2014 Oct 21;53(41):6574-83. doi: 10.1021/bi500917q. Epub 2014 Oct 7.

PMID:
25243743
6.

The Glu²¹⁶/Ser²¹⁸ pocket is a major determinant of spermine oxidase substrate specificity.

Cervelli M, Angelucci E, Stano P, Leboffe L, Federico R, Antonini G, Mariottini P, Polticelli F.

Biochem J. 2014 Aug 1;461(3):453-9. doi: 10.1042/BJ20140305.

PMID:
24854736
7.

A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.

Sánchez-Azqueta A, Herguedas B, Hurtado-Guerrero R, Hervás M, Navarro JA, Martínez-Júlvez M, Medina M.

Biochim Biophys Acta. 2014 Feb;1837(2):251-63. doi: 10.1016/j.bbabio.2013.10.010. Epub 2013 Nov 4.

8.

Solvent isotope and viscosity effects on the steady-state kinetics of the flavoprotein nitroalkane oxidase.

Gadda G, Fitzpatrick PF.

FEBS Lett. 2013 Sep 2;587(17):2785-9. doi: 10.1016/j.febslet.2013.04.021. Epub 2013 May 6.

9.

Identification of residues important for the catalysis, structure maintenance, and substrate specificity of yeast 3-hydroxyacyl-CoA dehydratase Phs1.

Yazawa T, Naganuma T, Yamagata M, Kihara A.

FEBS Lett. 2013 Mar 18;587(6):804-9. doi: 10.1016/j.febslet.2013.02.006. Epub 2013 Feb 14.

10.

Mechanistic and structural analyses of the roles of active site residues in yeast polyamine oxidase Fms1: characterization of the N195A and D94N enzymes.

Adachi MS, Taylor AB, Hart PJ, Fitzpatrick PF.

Biochemistry. 2012 Oct 30;51(43):8690-7. doi: 10.1021/bi3011434. Epub 2012 Oct 15.

11.

Mechanistic studies of the role of a conserved histidine in a mammalian polyamine oxidase.

Tormos JR, Henderson Pozzi M, Fitzpatrick PF.

Arch Biochem Biophys. 2012 Dec 1;528(1):45-9. doi: 10.1016/j.abb.2012.08.007. Epub 2012 Aug 30.

12.

Identification of critical steps governing the two-component alkanesulfonate monooxygenase catalytic mechanism.

Robbins JM, Ellis HR.

Biochemistry. 2012 Aug 14;51(32):6378-87. Epub 2012 Jul 30.

PMID:
22775358
13.

Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.

Kumar VP, Thomas LM, Bobyk KD, Andi B, Cook PF, West AH.

Biochemistry. 2012 Jan 31;51(4):857-66. doi: 10.1021/bi201808. Epub 2012 Jan 23.

14.

Role of zinc ion for catalytic activity in d-serine dehydratase from Saccharomyces cerevisiae.

Ito T, Koga K, Hemmi H, Yoshimura T.

FEBS J. 2012 Feb;279(4):612-24. doi: 10.1111/j.1742-4658.2011.08451.x. Epub 2012 Jan 19.

PMID:
22176976
15.
16.

Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction.

Wongnate T, Sucharitakul J, Chaiyen P.

Chembiochem. 2011 Nov 25;12(17):2577-86. doi: 10.1002/cbic.201100564. Epub 2011 Oct 19.

PMID:
22012709
17.

Insights on the mechanism of amine oxidation catalyzed by D-arginine dehydrogenase through pH and kinetic isotope effects.

Yuan H, Xin Y, Hamelberg D, Gadda G.

J Am Chem Soc. 2011 Nov 23;133(46):18957-65. doi: 10.1021/ja2082729. Epub 2011 Oct 31.

PMID:
21999550
18.

The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH.

Bobyk KD, Kim SG, Kumar VP, Kim SK, West AH, Cook PF.

Arch Biochem Biophys. 2011 Sep 15;513(2):71-80. doi: 10.1016/j.abb.2011.07.009. Epub 2011 Jul 28.

PMID:
21798231
19.

Engineering Klebsiella sp. 601 multicopper oxidase enhances the catalytic efficiency towards phenolic substrates.

Li Y, Gong Z, Li X, Li Y, Wang XG.

BMC Biochem. 2011 May 31;12:30. doi: 10.1186/1471-2091-12-30.

20.

Lyme disease enolpyruvyl-UDP-GlcNAc synthase: fosfomycin-resistant MurA from Borrelia burgdorferi, a fosfomycin-sensitive mutant, and the catalytic role of the active site Asp.

Jiang S, Gilpin ME, Attia M, Ting YL, Berti PJ.

Biochemistry. 2011 Mar 29;50(12):2205-12. doi: 10.1021/bi1017842. Epub 2011 Feb 18.

PMID:
21294548
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk