Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 259

Similar articles for PubMed (Select 22640729)

1.

Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.

Ng CY, Jung MY, Lee J, Oh MK.

Microb Cell Fact. 2012 May 28;11:68. doi: 10.1186/1475-2859-11-68.

2.

Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.

Lian J, Chao R, Zhao H.

Metab Eng. 2014 May;23:92-9. doi: 10.1016/j.ymben.2014.02.003. Epub 2014 Feb 10.

PMID:
24525332
3.

Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

Jung MY, Ng CY, Song H, Lee J, Oh MK.

Appl Microbiol Biotechnol. 2012 Jul;95(2):461-9. doi: 10.1007/s00253-012-3883-9.

PMID:
22297429
4.

Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.

Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S.

Appl Environ Microbiol. 2009 May;75(10):3196-205. doi: 10.1128/AEM.02157-08. Epub 2009 Mar 27.

5.

In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.

Park JM, Song H, Lee HJ, Seung D.

J Ind Microbiol Biotechnol. 2013 Sep;40(9):1057-66. doi: 10.1007/s10295-013-1298-y. Epub 2013 Jun 19.

PMID:
23779220
6.

Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism.

Romero S, Merino E, Bolívar F, Gosset G, Martinez A.

Appl Environ Microbiol. 2007 Aug;73(16):5190-8. Epub 2007 Jun 22.

7.

Enhanced production of 2,3-butanediol by engineered Bacillus subtilis.

Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A.

Appl Microbiol Biotechnol. 2012 May;94(3):651-8. doi: 10.1007/s00253-011-3774-5. Epub 2012 Feb 25.

PMID:
22361854
8.

The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.

Nicholson WL.

Appl Environ Microbiol. 2008 Nov;74(22):6832-8. doi: 10.1128/AEM.00881-08. Epub 2008 Sep 26.

9.

Production of 2,3-butanediol by engineered Saccharomyces cerevisiae.

Kim SJ, Seo SO, Jin YS, Seo JH.

Bioresour Technol. 2013 Oct;146:274-81. doi: 10.1016/j.biortech.2013.07.081. Epub 2013 Jul 24.

PMID:
23941711
10.

High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling.

Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H.

Appl Environ Microbiol. 2011 Oct;77(19):6826-35. doi: 10.1128/AEM.05544-11. Epub 2011 Aug 12.

11.

Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production.

Park JM, Song H, Lee HJ, Seung D.

Microb Cell Fact. 2013 Feb 23;12:20. doi: 10.1186/1475-2859-12-20.

12.

Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

Yu KO, Jung J, Ramzi AB, Kim SW, Park C, Han SO.

Appl Biochem Biotechnol. 2012 Feb;166(4):856-65. doi: 10.1007/s12010-011-9475-9. Epub 2011 Dec 13.

PMID:
22161213
13.

Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.

Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J.

PLoS One. 2013;8(1):e54144. doi: 10.1371/journal.pone.0054144. Epub 2013 Jan 21.

14.

Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae.

de Smidt O, du Preez JC, Albertyn J.

FEMS Yeast Res. 2012 Feb;12(1):33-47. doi: 10.1111/j.1567-1364.2011.00760.x. Epub 2011 Dec 15.

15.

Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production.

Wang Q, Chen T, Zhao X, Chamu J.

Biotechnol Bioeng. 2012 Jul;109(7):1610-21. doi: 10.1002/bit.24427. Epub 2012 Jan 10.

PMID:
22231522
16.

Metabolic engineering of Bacillus subtilis for enhanced production of acetoin.

Wang M, Fu J, Zhang X, Chen T.

Biotechnol Lett. 2012 Oct;34(10):1877-85. doi: 10.1007/s10529-012-0981-9. Epub 2012 Jun 20.

PMID:
22714279
17.

Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene.

Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S.

Appl Microbiol Biotechnol. 2010 Feb;85(6):1751-8. doi: 10.1007/s00253-009-2222-2. Epub 2009 Sep 16.

PMID:
19756578
18.

Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli.

Shen X, Lin Y, Jain R, Yuan Q, Yan Y.

J Ind Microbiol Biotechnol. 2012 Nov;39(11):1725-9. doi: 10.1007/s10295-012-1171-4. Epub 2012 Jul 26.

PMID:
22832943
19.

In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol.

Hao T, Han B, Ma H, Fu J, Wang H, Wang Z, Tang B, Chen T, Zhao X.

Mol Biosyst. 2013 Aug;9(8):2034-44. doi: 10.1039/c3mb25568a. Epub 2013 May 10.

PMID:
23666098
20.

Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.

Guadalupe Medina V, Almering MJ, van Maris AJ, Pronk JT.

Appl Environ Microbiol. 2010 Jan;76(1):190-5. doi: 10.1128/AEM.01772-09. Epub 2009 Nov 13.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk