Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 229

1.

Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.

Aernouts J, Aerts JR, Dirckx JJ.

Hear Res. 2012 Aug;290(1-2):45-54. doi: 10.1016/j.heares.2012.05.001. Epub 2012 May 11.

PMID:
22583920
2.

Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.

Aernouts J, Dirckx JJ.

Biomech Model Mechanobiol. 2012 Jul;11(6):829-40. doi: 10.1007/s10237-011-0355-6. Epub 2011 Oct 29.

PMID:
22038402
3.

Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.

Hesabgar SM, Marshall H, Agrawal SK, Samani A, Ladak HM.

Hear Res. 2010 May;263(1-2):168-76. doi: 10.1016/j.heares.2010.02.005. Epub 2010 Feb 8.

PMID:
20146934
4.

Viscoelastic properties of gerbil tympanic membrane at very low frequencies.

Aernouts J, Dirckx JJ.

J Biomech. 2012 Apr 5;45(6):919-24. doi: 10.1016/j.jbiomech.2012.01.023. Epub 2012 Feb 10.

PMID:
22326125
5.

Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study.

Aernouts J, Soons JA, Dirckx JJ.

Hear Res. 2010 May;263(1-2):177-82. doi: 10.1016/j.heares.2009.09.007. Epub 2009 Sep 22.

PMID:
19778595
6.

Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique.

Ghadarghadar N, Agrawal SK, Samani A, Ladak HM.

Comput Methods Programs Biomed. 2013 Jun;110(3):231-9. doi: 10.1016/j.cmpb.2012.11.006. Epub 2012 Dec 25.

PMID:
23270964
7.

Characterization of the linearly viscoelastic behavior of human tympanic membrane by nanoindentation.

Daphalapurkar NP, Dai C, Gan RZ, Lu H.

J Mech Behav Biomed Mater. 2009 Jan;2(1):82-92. doi: 10.1016/j.jmbbm.2008.05.008. Epub 2008 Jun 12.

PMID:
19627811
8.
9.

Measurement of young's modulus of human tympanic membrane at high strain rates.

Luo H, Dai C, Gan RZ, Lu H.

J Biomech Eng. 2009 Jun;131(6):064501. doi: 10.1115/1.3118770.

PMID:
19449971
10.

Viscoelastic properties of human tympanic membrane.

Cheng T, Dai C, Gan RZ.

Ann Biomed Eng. 2007 Feb;35(2):305-14. Epub 2006 Dec 8.

PMID:
17160465
11.

A non-linear viscoelastic model for the tympanic membrane.

Motallebzadeh H, Charlebois M, Funnell WR.

J Acoust Soc Am. 2013 Dec;134(6):4427. doi: 10.1121/1.4828831.

PMID:
25669254
12.

Dynamic properties of human tympanic membrane based on frequency-temperature superposition.

Zhang X, Gan RZ.

Ann Biomed Eng. 2013 Jan;41(1):205-14. doi: 10.1007/s10439-012-0624-2. Epub 2012 Jul 21.

13.

A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation.

Huang G, Daphalapurkar NP, Gan RZ, Lu H.

J Biomech Eng. 2008 Feb;130(1):014501. doi: 10.1115/1.2838034.

PMID:
18298192
14.

Modeling the eardrum as a string with distributed force.

Goll E, Dalhoff E.

J Acoust Soc Am. 2011 Sep;130(3):1452-62. doi: 10.1121/1.3613934.

PMID:
21895086
15.

Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy.

Tripathy S, Berger EJ.

Comput Methods Biomech Biomed Engin. 2012;15(5):475-86. doi: 10.1080/10255842.2010.545820. Epub 2011 Jul 7.

PMID:
22432922
16.

Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique.

Soons JA, Aernouts J, Dirckx JJ.

Hear Res. 2010 May;263(1-2):33-7. doi: 10.1016/j.heares.2009.10.001. Epub 2009 Oct 8.

PMID:
19818840
17.
18.

Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.

Julkunen P, Korhonen RK, Herzog W, Jurvelin JS.

Med Eng Phys. 2008 May;30(4):506-15. Epub 2007 Jul 12.

PMID:
17629536
19.
20.

Low-frequency finite-element modeling of the gerbil middle ear.

Elkhouri N, Liu H, Funnell WR.

J Assoc Res Otolaryngol. 2006 Dec;7(4):399-411. Epub 2006 Oct 17.

Items per page

Supplemental Content

Write to the Help Desk