Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 99

Similar articles for PubMed (Select 22541436)

1.

A cardiac microRNA governs systemic energy homeostasis by regulation of MED13.

Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN.

Cell. 2012 Apr 27;149(3):671-83. doi: 10.1016/j.cell.2012.03.029.

2.

Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*.

Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, Bassel-Duby R, Olson EN.

Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15330-5. Epub 2012 Sep 4.

3.

Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila.

Lee JH, Bassel-Duby R, Olson EN.

Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):9491-6. doi: 10.1073/pnas.1409427111. Epub 2014 Jun 16.

4.

MED13-dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver.

Baskin KK, Grueter CE, Kusminski CM, Holland WL, Bookout AL, Satapati S, Kong YM, Burgess SC, Malloy CR, Scherer PE, Newgard CB, Bassel-Duby R, Olson EN.

EMBO Mol Med. 2014 Nov 24;6(12):1610-21. doi: 10.15252/emmm.201404218.

5.

Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance.

Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, Kim JK, Lee AS.

Diabetes. 2010 Jan;59(1):6-16. doi: 10.2337/db09-0755. Epub 2009 Oct 6.

6.

Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes.

Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, Prentki M, Regazzi R.

Diabetologia. 2013 Oct;56(10):2203-12. doi: 10.1007/s00125-013-2993-y. Epub 2013 Jul 11.

PMID:
23842730
7.

Alteration of JNK-1 signaling in skeletal muscle fails to affect glucose homeostasis and obesity-associated insulin resistance in mice.

Pal M, Wunderlich CM, Spohn G, Brönneke HS, Schmidt-Supprian M, Wunderlich FT.

PLoS One. 2013;8(1):e54247. doi: 10.1371/journal.pone.0054247. Epub 2013 Jan 17.

8.

A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

Chen W, Zhang X, Birsoy K, Roeder RG.

Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10196-201. doi: 10.1073/pnas.1005626107. Epub 2010 May 17.

9.

Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs.

Frost RJ, Olson EN.

Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21075-80. doi: 10.1073/pnas.1118922109. Epub 2011 Dec 12.

10.

Neuronal SH2B1 is essential for controlling energy and glucose homeostasis.

Ren D, Zhou Y, Morris D, Li M, Li Z, Rui L.

J Clin Invest. 2007 Feb;117(2):397-406. Epub 2007 Jan 18.

11.

Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy.

Guo R, Zhang Y, Turdi S, Ren J.

Biochim Biophys Acta. 2013 Aug;1832(8):1136-48. doi: 10.1016/j.bbadis.2013.03.013. Epub 2013 Mar 21.

12.

Heart over mind: metabolic control of white adipose tissue and liver.

Nakamura M, Sadoshima J.

EMBO Mol Med. 2014 Dec 3;6(12):1521-4. doi: 10.15252/emmm.201404749.

13.

GPR39, a receptor of the ghrelin receptor family, plays a role in the regulation of glucose homeostasis in a mouse model of early onset diet-induced obesity.

Verhulst PJ, Lintermans A, Janssen S, Loeckx D, Himmelreich U, Buyse J, Tack J, Depoortere I.

J Neuroendocrinol. 2011 Jun;23(6):490-500. doi: 10.1111/j.1365-2826.2011.02132.x.

PMID:
21470317
14.

Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism.

Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Böttger T, Braun T, Seibler J, Brüning JC.

Nat Cell Biol. 2011 Apr;13(4):434-46. doi: 10.1038/ncb2211. Epub 2011 Mar 27.

PMID:
21441927
15.

Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content.

Fullston T, Ohlsson Teague EM, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M.

FASEB J. 2013 Oct;27(10):4226-43. doi: 10.1096/fj.12-224048. Epub 2013 Jul 11.

16.

Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity.

Sun C, Tian L, Nie J, Zhang H, Han X, Shi Y.

J Biol Chem. 2012 Nov 2;287(45):38305-15. doi: 10.1074/jbc.M112.388934. Epub 2012 Sep 19.

17.

Roles for corticotropin-releasing factor receptor type 1 in energy homeostasis in mice.

Sakamoto R, Matsubara E, Nomura M, Wang L, Kawahara Y, Yanase T, Nawata H, Takayanagi R.

Metabolism. 2013 Dec;62(12):1739-48. doi: 10.1016/j.metabol.2013.08.005. Epub 2013 Sep 17.

PMID:
24054833
18.

Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors.

Sutton GM, Trevaskis JL, Hulver MW, McMillan RP, Markward NJ, Babin MJ, Meyer EA, Butler AA.

Endocrinology. 2006 May;147(5):2183-96. Epub 2006 Feb 9.

19.

Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure.

Liu W, Singh R, Choi CS, Lee HY, Keramati AR, Samuel VT, Lifton RP, Shulman GI, Mani A.

J Biol Chem. 2012 Mar 2;287(10):7213-23. doi: 10.1074/jbc.M111.286724. Epub 2012 Jan 9.

20.

Resistance to diet-induced obesity and improved insulin sensitivity in mice with a regulator of G protein signaling-insensitive G184S Gnai2 allele.

Huang X, Charbeneau RA, Fu Y, Kaur K, Gerin I, MacDougald OA, Neubig RR.

Diabetes. 2008 Jan;57(1):77-85. Epub 2007 Oct 10.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk