Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Structure-based design of supercharged, highly thermoresistant antibodies.

Miklos AE, Kluwe C, Der BS, Pai S, Sircar A, Hughes RA, Berrondo M, Xu J, Codrea V, Buckley PE, Calm AM, Welsh HS, Warner CR, Zacharko MA, Carney JP, Gray JJ, Georgiou G, Kuhlman B, Ellington AD.

Chem Biol. 2012 Apr 20;19(4):449-55. doi: 10.1016/j.chembiol.2012.01.018.

2.

Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability.

Der BS, Kluwe C, Miklos AE, Jacak R, Lyskov S, Gray JJ, Georgiou G, Ellington AD, Kuhlman B.

PLoS One. 2013 May 31;8(5):e64363. doi: 10.1371/journal.pone.0064363. Print 2013.

3.

Probing the stability-limiting regions of an antibody single-chain variable fragment: a molecular dynamics simulation study.

Wang T, Duan Y.

Protein Eng Des Sel. 2011 Sep;24(9):649-57. doi: 10.1093/protein/gzr029. Epub 2011 Jul 5.

4.

Engineered single-domain antibodies with high protease resistance and thermal stability.

Hussack G, Hirama T, Ding W, Mackenzie R, Tanha J.

PLoS One. 2011;6(11):e28218. doi: 10.1371/journal.pone.0028218. Epub 2011 Nov 30.

5.

VH/VL interface engineering to promote selective expression and inhibit conformational isomerization of thrombopoietin receptor agonist single-chain diabody.

Igawa T, Tsunoda H, Kikuchi Y, Yoshida M, Tanaka M, Koga A, Sekimori Y, Orita T, Aso Y, Hattori K, Tsuchiya M.

Protein Eng Des Sel. 2010 Aug;23(8):667-77. doi: 10.1093/protein/gzq034. Epub 2010 Jun 24.

6.

Chaperone-like effects of a scFv antibody on the folding of human muscle creatine kinase.

Li S, Sun C, Teng N, Yang W, Zhou L, Zhang Y.

Protein Eng Des Sel. 2013 Aug;26(8):523-31. doi: 10.1093/protein/gzt029. Epub 2013 Jun 23.

7.

Engineering antibodies for stability and efficient folding.

Honegger A.

Handb Exp Pharmacol. 2008;(181):47-68. Review.

PMID:
18071941
8.

Integration of PEGylation and refolding for renaturation of recombinant proteins from insoluble aggregates produced in bacteria--application to a single-chain Fv fragment.

Kumagai I, Asano R, Nakanishi T, Hashikami K, Tanaka S, Badran A, Sanada H, Umetsu M.

J Biosci Bioeng. 2010 May;109(5):447-52. doi: 10.1016/j.jbiosc.2009.10.016. Epub 2009 Nov 4.

PMID:
20347766
9.

A single mutation in framework 2 of the heavy variable domain improves the properties of a diabody and a related single-chain antibody.

Rodríguez-Rodríguez ER, Ledezma-Candanoza LM, Contreras-Ferrat LG, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L.

J Mol Biol. 2012 Oct 26;423(3):337-50. doi: 10.1016/j.jmb.2012.07.007. Epub 2012 Jul 23.

PMID:
22835504
10.

Anti-glycophorin single-chain Fv fusion to low-affinity mutant erythropoietin improves red blood cell-lineage specificity.

Taylor ND, Way JC, Silver PA, Cironi P.

Protein Eng Des Sel. 2010 Apr;23(4):251-60. doi: 10.1093/protein/gzp085. Epub 2010 Jan 18.

12.

Modeling the three-dimensional structures of an unbound single-chain variable fragment (scFv) and its hypothetical complex with a Corynespora cassiicola toxin, cassiicolin.

Malik A, Firoz A, Jha V, Sunderasan E, Ahmad S.

J Mol Model. 2010 Dec;16(12):1883-93. doi: 10.1007/s00894-010-0680-1. Epub 2010 Mar 16.

PMID:
20232097
13.

An integrated approach to extreme thermostabilization and affinity maturation of an antibody.

McConnell AD, Spasojevich V, Macomber JL, Krapf IP, Chen A, Sheffer JC, Berkebile A, Horlick RA, Neben S, King DJ, Bowers PM.

Protein Eng Des Sel. 2013 Feb;26(2):151-64. doi: 10.1093/protein/gzs090. Epub 2012 Nov 19.

14.

Cloning and characterization of a single-chain fragment of monoclonal antibody to ACE suitable for lung endothelial targeting.

Balyasnikova IV, Berestetskaya JV, Visintine DJ, Nesterovitch AB, Adamian L, Danilov SM.

Microvasc Res. 2010 Dec;80(3):355-64. doi: 10.1016/j.mvr.2010.09.007. Epub 2010 Sep 29.

PMID:
20888351
15.

Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues.

Edwardraja S, Sriram S, Govindan R, Budisa N, Lee SG.

Mol Biosyst. 2011 Jan;7(1):258-65. doi: 10.1039/c0mb00154f. Epub 2010 Nov 19.

PMID:
21103487
16.

The importance of framework residues H6, H7 and H10 in antibody heavy chains: experimental evidence for a new structural subclassification of antibody V(H) domains.

Jung S, Spinelli S, Schimmele B, Honegger A, Pugliese L, Cambillau C, Plückthun A.

J Mol Biol. 2001 Jun 8;309(3):701-16.

PMID:
11397090
17.

Redesigning of anti-c-Met single chain Fv antibody for the cytoplasmic folding and its structural analysis.

Edwardraja S, Neelamegam R, Ramadoss V, Venkatesan S, Lee SG.

Biotechnol Bioeng. 2010 Jun 15;106(3):367-75. doi: 10.1002/bit.22702.

PMID:
20178123
18.

Stability engineering of scFvs for the development of bispecific and multivalent antibodies.

Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, Snyder WB, Croner LJ, Wang N, Amatucci A, Michaelson JS, Glaser SM.

Protein Eng Des Sel. 2010 Jul;23(7):549-57. doi: 10.1093/protein/gzq028. Epub 2010 May 10.

19.

Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.

Vriend G, Eijsink V.

J Comput Aided Mol Des. 1993 Aug;7(4):367-96. Review.

PMID:
8229092
20.
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk