Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 132

1.

Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins.

Rinaldi A, Gambuti A, Moio L.

J Food Sci. 2012 Apr;77(4):C485-90. doi: 10.1111/j.1750-3841.2012.02639.x.

PMID:
22515240
2.

Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.

Rinaldi A, Gambuti A, Moio L.

Food Chem. 2012 Dec 15;135(4):2498-504. doi: 10.1016/j.foodchem.2012.07.031. Epub 2012 Jul 16.

PMID:
22980834
3.

The role of salivary proteins in the mechanism of astringency.

Lee CA, Ismail B, Vickers ZM.

J Food Sci. 2012 Apr;77(4):C381-7. doi: 10.1111/j.1750-3841.2012.02644.x.

PMID:
22515235
4.

Evolution of phenolic compounds and astringency during aging of red wine: effect of oxygen exposure before and after bottling.

Gambuti A, Rinaldi A, Ugliano M, Moio L.

J Agric Food Chem. 2013 Feb 27;61(8):1618-27. doi: 10.1021/jf302822b. Epub 2012 Nov 12.

PMID:
23110349
5.

Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.

Obreque-Slíer E, Peña-Neira A, López-Solís R.

J Agric Food Chem. 2010 Mar 24;58(6):3729-35. doi: 10.1021/jf903659t.

PMID:
20158256
6.

Effect of condensed tannins addition on the astringency of red wines.

Soares S, Sousa A, Mateus N, de Freitas V.

Chem Senses. 2012 Feb;37(2):191-8. doi: 10.1093/chemse/bjr092. Epub 2011 Nov 15.

7.

Phenolic composition and mouthfeel characteristics resulting from blending Chilean red wines.

Cáceres-Mella A, Peña-Neira A, Avilés-Gálvez P, Medel-Marabolí M, Del Barrio-Galán R, López-Solís R, Canals JM.

J Sci Food Agric. 2014 Mar 15;94(4):666-76. doi: 10.1002/jsfa.6303. Epub 2013 Aug 2.

PMID:
23847104
8.

Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.

Sun B, de Sá M, Leandro C, Caldeira I, Duarte FL, Spranger I.

J Agric Food Chem. 2013 Jan 30;61(4):939-46. doi: 10.1021/jf303704u. Epub 2013 Jan 17.

PMID:
23294371
9.

Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research.

McRae JM, Kennedy JA.

Molecules. 2011 Mar 11;16(3):2348-64. doi: 10.3390/molecules16032348. Review.

10.

Maceration enzymes and mannoproteins: a possible strategy to increase colloidal stability and color extraction in red wines.

Guadalupe Z, Palacios A, Ayestaran B.

J Agric Food Chem. 2007 Jun 13;55(12):4854-62. Epub 2007 May 11.

PMID:
17497793
11.

Towards a molecular interpretation of astringency: synthesis, 3D structure, colloidal state, and human saliva protein recognition of procyanidins.

Cala O, Fabre S, Pinaud N, Dufourc EJ, Fouquet E, Laguerre M, Pianet I.

Planta Med. 2011 Jul;77(11):1116-22. doi: 10.1055/s-0030-1270848. Epub 2011 Mar 16.

PMID:
21412697
12.

Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine.

McRae JM, Ziora ZM, Kassara S, Cooper MA, Smith PA.

J Agric Food Chem. 2015 May 6;63(17):4345-52. doi: 10.1021/acs.jafc.5b00758. Epub 2015 Apr 22.

PMID:
25877783
13.

Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois.

Johnson MH, Gonzalez de Mejia E.

J Food Sci. 2012 Jan;77(1):C141-8. doi: 10.1111/j.1750-3841.2011.02505.x. Epub 2011 Dec 19.

PMID:
22182198
14.

Chip electrophoresis as a novel approach to measure the polyphenols reactivity toward human saliva.

Rinaldi A, Iturmendi N, Gambuti A, Jourdes M, Teissedre PL, Moio L.

Electrophoresis. 2014 Jun;35(11):1735-41.

PMID:
25025096
15.

Modelling phenolic and technological maturities of grapes by means of the multivariate relation between organoleptic and physicochemical properties.

Meléndez E, Ortiz MC, Sarabia LA, Íñiguez M, Puras P.

Anal Chim Acta. 2013 Jan 25;761:53-61. doi: 10.1016/j.aca.2012.11.021. Epub 2012 Nov 27.

PMID:
23312314
16.

Characterization of white wine mannoproteins.

Gonçalves F, Heyraud A, de Pinho MN, Rinaudo M.

J Agric Food Chem. 2002 Oct 9;50(21):6097-101.

PMID:
12358486
17.

Sensory properties of wine tannin fractions: implications for in-mouth sensory properties.

McRae JM, Schulkin A, Kassara S, Holt HE, Smith PA.

J Agric Food Chem. 2013 Jan 23;61(3):719-27. doi: 10.1021/jf304239n. Epub 2013 Jan 11.

PMID:
23289627
18.

A physiological model of tea-induced astringency.

Nayak A, Carpenter GH.

Physiol Behav. 2008 Oct 20;95(3):290-4. doi: 10.1016/j.physbeh.2008.05.023. Epub 2008 Jun 5.

PMID:
18590751
19.

Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization.

Guise R, Filipe-Ribeiro L, Nascimento D, Bessa O, Nunes FM, Cosme F.

Food Chem. 2014 Aug 1;156:250-7. doi: 10.1016/j.foodchem.2014.01.081. Epub 2014 Feb 5.

PMID:
24629965
20.

Effect of commercial mannoprotein addition on polysaccharide, polyphenolic, and color composition in red wines.

Guadalupe Z, Ayestarán B.

J Agric Food Chem. 2008 Oct 8;56(19):9022-9. doi: 10.1021/jf801535k. Epub 2008 Sep 4.

PMID:
18767857
Items per page

Supplemental Content

Write to the Help Desk