Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

FEBio: finite elements for biomechanics.

Maas SA, Ellis BJ, Ateshian GA, Weiss JA.

J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.

2.

Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation.

Ateshian GA, Albro MB, Maas S, Weiss JA.

J Biomech Eng. 2011 Aug;133(8):081005. doi: 10.1115/1.4004810.

3.

Three-dimensional finite element modeling of ligaments: technical aspects.

Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS.

Med Eng Phys. 2005 Dec;27(10):845-61. Epub 2005 Aug 8.

PMID:
16085446
4.

Comparison between FEBio and Abaqus for biphasic contact problems.

Meng Q, Jin Z, Fisher J, Wilcox R.

Proc Inst Mech Eng H. 2013 Sep;227(9):1009-19. doi: 10.1177/0954411913483537. Epub 2013 Jun 26.

5.

Apparent behaviour of charged and neutral materials with ellipsoidal fibre distributions and cross-validation of finite element implementations.

Nagel T, Kelly DJ.

J Mech Behav Biomed Mater. 2012 May;9:122-9. doi: 10.1016/j.jmbbm.2012.01.006. Epub 2012 Jan 21.

PMID:
22498290
6.

Computational modeling of ligament mechanics.

Weiss JA, Gardiner JC.

Crit Rev Biomed Eng. 2001;29(3):303-71. Review.

PMID:
11730098
7.

Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.

Sun W, Sacks MS.

Biomech Model Mechanobiol. 2005 Nov;4(2-3):190-9. Epub 2005 Aug 2.

PMID:
16075264
8.

Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

Vande Geest JP, Simon BR, Rigby PH, Newberg TP.

J Biomech Eng. 2011 Apr;133(4):044502. doi: 10.1115/1.4003489.

PMID:
21428686
9.

Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.

Hosseini HS, Pahr DH, Zysset PK.

J Mech Behav Biomed Mater. 2012 Nov;15:93-102. doi: 10.1016/j.jmbbm.2012.06.005. Epub 2012 Jun 20.

PMID:
23032429
11.

Comparison of various contact algorithms for poroelastic tissues.

Galbusera F, Bashkuev M, Wilke HJ, Shirazi-Adl A, Schmidt H.

Comput Methods Biomech Biomed Engin. 2014;17(12):1323-34. doi: 10.1080/10255842.2012.745858. Epub 2012 Dec 18.

PMID:
23244496
12.
13.

[The finite element modeling of human pelvis and its application in medicolegal expertise].

Li ZD, Zou DH, Liu NG, Huang P, Chen YJ.

Fa Yi Xue Za Zhi. 2010 Dec;26(6):406-12. Chinese.

PMID:
21425599
14.
15.

Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.

Ateshian GA, Maas S, Weiss JA.

J Biomech Eng. 2013 Nov;135(11):111001. doi: 10.1115/1.4024823.

16.

Application of finite elements to the stress analysis of articular cartilage.

Goldsmith AA, Hayes A, Clift SE.

Med Eng Phys. 1996 Mar;18(2):89-98. Review.

PMID:
8673324
17.

A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties.

Kourtis LC, Carter DR, Kesari H, Beaupre GS.

Comput Methods Biomech Biomed Engin. 2008 Oct;11(5):463-76. doi: 10.1080/10255840801930728.

PMID:
19230145
18.

Viscoelastic studies of human subscapularis tendon: relaxation test and a Wiechert model.

Machiraju C, Phan AV, Pearsall AW, Madanagopal S.

Comput Methods Programs Biomed. 2006 Jul;83(1):29-33. Epub 2006 Jul 7.

PMID:
16824643
19.

On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials.

Evans SL.

Comput Methods Biomech Biomed Engin. 2009 Jun;12(3):319-32. doi: 10.1080/10255840802546762.

PMID:
19199169
20.
Items per page

Supplemental Content

Write to the Help Desk