Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.

CUP-1 is a novel protein involved in dietary cholesterol uptake in Caenorhabditis elegans.

Valdes VJ, Athie A, Salinas LS, Navarro RE, Vaca L.

PLoS One. 2012;7(3):e33962. doi: 10.1371/journal.pone.0033962. Epub 2012 Mar 27. Erratum in: PLoS One. 2012;7(8). doi: 10.1371/annotation/5a203055-6c15-43b0-96ad-0fbd5eb9b810.

2.

Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference.

Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel O 4th, Liebau E, Lüersen K.

FASEB J. 2010 Jan;24(1):206-17. doi: 10.1096/fj.09-135889. Epub 2009 Sep 17.

3.

The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans.

Kuervers LM, Jones CL, O'Neil NJ, Baillie DL.

Mol Genet Genomics. 2003 Nov;270(2):121-31. Epub 2003 Aug 5.

PMID:
12905072
4.

Crystal structure of the cell corpse engulfment protein CED-2 in Caenorhabditis elegans.

Kang Y, Xu J, Liu Y, Sun J, Sun D, Hu Y, Liu Y.

Biochem Biophys Res Commun. 2011 Jul 1;410(2):189-94. doi: 10.1016/j.bbrc.2011.05.051. Epub 2011 May 17.

PMID:
21616056
5.

RHGF-2 is an essential Rho-1 specific RhoGEF that binds to the multi-PDZ domain scaffold protein MPZ-1 in Caenorhabditis elegans.

Lin L, Tran T, Hu S, Cramer T, Komuniecki R, Steven RM.

PLoS One. 2012;7(2):e31499. doi: 10.1371/journal.pone.0031499. Epub 2012 Feb 20.

6.

Intracellular trafficking and synaptic function of APL-1 in Caenorhabditis elegans.

Wiese M, Antebi A, Zheng H.

PLoS One. 2010 Sep 20;5(9). pii: e12790. doi: 10.1371/journal.pone.0012790.

7.

Mitochondrial oxidative stress alters a pathway in Caenorhabditis elegans strongly resembling that of bile acid biosynthesis and secretion in vertebrates.

Liu JL, Desjardins D, Branicky R, Agellon LB, Hekimi S.

PLoS Genet. 2012;8(3):e1002553. doi: 10.1371/journal.pgen.1002553. Epub 2012 Mar 15.

8.

Cloning and functional characterization of a folate transporter from the nematode Caenorhabditis elegans.

Balamurugan K, Ashokkumar B, Moussaif M, Sze JY, Said HM.

Am J Physiol Cell Physiol. 2007 Aug;293(2):C670-81. Epub 2007 May 2.

9.

Proteomic changes during disturbance of cholesterol metabolism by azacoprostane treatment in Caenorhabditis elegans.

Choi BK, Chitwood DJ, Paik YK.

Mol Cell Proteomics. 2003 Oct;2(10):1086-95. Epub 2003 Aug 6.

10.

The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization.

Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A.

Development. 2005 Jun;132(12):2795-808.

11.

Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses.

Vinci G, Xia X, Veitia RA.

PLoS One. 2008 Aug 6;3(8):e2883. doi: 10.1371/journal.pone.0002883.

12.

DYC-1, a protein functionally linked to dystrophin in Caenorhabditis elegans is associated with the dense body, where it interacts with the muscle LIM domain protein ZYX-1.

Lecroisey C, Martin E, Mariol MC, Granger L, Schwab Y, Labouesse M, Ségalat L, Gieseler K.

Mol Biol Cell. 2008 Mar;19(3):785-96. Epub 2007 Dec 19.

13.

Systemic RNAi in Caenorhabditis elegans.

Hunter CP, Winston WM, Molodowitch C, Feinberg EH, Shih J, Sutherlin M, Wright AJ, Fitzgerald MC.

Cold Spring Harb Symp Quant Biol. 2006;71:95-100. Review.

PMID:
17381285
14.
15.
16.

Mutations in the Caenorhabditis elegans U2AF large subunit UAF-1 alter the choice of a 3' splice site in vivo.

Ma L, Horvitz HR.

PLoS Genet. 2009 Nov;5(11):e1000708. doi: 10.1371/journal.pgen.1000708. Epub 2009 Nov 6.

17.

Molecular characterization of two homologs of the Caenorhabditis elegans cadmium-responsive gene cdr-1: cdr-4 and cdr-6.

Dong J, Boyd WA, Freedman JH.

J Mol Biol. 2008 Feb 22;376(3):621-33. doi: 10.1016/j.jmb.2007.11.094. Epub 2007 Dec 5.

18.

CRAC channel activity in C. elegans is mediated by Orai1 and STIM1 homologues and is essential for ovulation and fertility.

Lorin-Nebel C, Xing J, Yan X, Strange K.

J Physiol. 2007 Apr 1;580(Pt 1):67-85. Epub 2007 Jan 11.

19.

Transport of dsRNA into cells by the transmembrane protein SID-1.

Feinberg EH, Hunter CP.

Science. 2003 Sep 12;301(5639):1545-7.

20.

Topologically conserved residues direct heme transport in HRG-1-related proteins.

Yuan X, Protchenko O, Philpott CC, Hamza I.

J Biol Chem. 2012 Feb 10;287(7):4914-24. doi: 10.1074/jbc.M111.326785. Epub 2011 Dec 15.

Items per page

Supplemental Content

Write to the Help Desk