Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 130

Similar articles for PubMed (Select 22404754)

1.

Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.

de Kok S, Kozak BU, Pronk JT, van Maris AJ.

FEMS Yeast Res. 2012 Jun;12(4):387-97. doi: 10.1111/j.1567-1364.2012.00799.x. Epub 2012 Apr 2. Review.

2.

In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories.

Gruchattka E, Hädicke O, Klamt S, Schütz V, Kayser O.

Microb Cell Fact. 2013 Sep 23;12:84. doi: 10.1186/1475-2859-12-84.

3.

Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.

Abbott DA, van den Brink J, Minneboo IM, Pronk JT, van Maris AJ.

FEMS Yeast Res. 2009 May;9(3):349-57. doi: 10.1111/j.1567-1364.2009.00506.x.

4.

Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase.

de Kok S, Yilmaz D, Suir E, Pronk JT, Daran JM, van Maris AJ.

Metab Eng. 2011 Sep;13(5):518-26. doi: 10.1016/j.ymben.2011.06.001. Epub 2011 Jun 17.

PMID:
21684346
5.

Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae.

Pronk JT, Wenzel TJ, Luttik MA, Klaassen CC, Scheffers WA, Steensma HY, van Dijken JP.

Microbiology. 1994 Mar;140 ( Pt 3):601-10.

6.

Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.

Gonzalez R, Andrews BA, Molitor J, Asenjo JA.

Biotechnol Bioeng. 2003 Apr 20;82(2):152-69.

PMID:
12584757
7.

Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.

Hara KY, Kiriyama K, Inagaki A, Nakayama H, Kondo A.

Appl Microbiol Biotechnol. 2012 Jun;94(5):1313-9. doi: 10.1007/s00253-011-3841-y. Epub 2012 Jan 11.

PMID:
22234534
8.

Engineering strategy of yeast metabolism for higher alcohol production.

Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A.

Microb Cell Fact. 2011 Sep 8;10:70. doi: 10.1186/1475-2859-10-70.

9.

Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain.

Yuan Y, Zhao H.

Biotechnol Bioeng. 2013 Nov;110(11):2874-81. doi: 10.1002/bit.24946. Epub 2013 Jun 27.

PMID:
23616289
10.

Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae.

Varman AM, Xiao Y, Leonard E, Tang YJ.

Microb Cell Fact. 2011 Jun 21;10:45. doi: 10.1186/1475-2859-10-45.

11.

Downstream reactions and engineering in the microbially reconstituted pathway for Taxol.

Jiang M, Stephanopoulos G, Pfeifer BA.

Appl Microbiol Biotechnol. 2012 May;94(4):841-9. doi: 10.1007/s00253-012-4016-1. Epub 2012 Mar 30. Review.

PMID:
22460591
12.

Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae.

Sun J, Shao Z, Zhao H, Nair N, Wen F, Xu JH, Zhao H.

Biotechnol Bioeng. 2012 Aug;109(8):2082-92. doi: 10.1002/bit.24481. Epub 2012 Mar 15.

PMID:
22383307
13.

[Metabolic engineering strategies for carboxylic acids production by Saccharomyces cerevisiae---a review].

Xu G, Liu L, Chen J.

Wei Sheng Wu Xue Bao. 2011 Dec;51(12):1571-7. Review. Chinese.

PMID:
22379797
14.

Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions.

Koebmann B, Blank LM, Solem C, Petranovic D, Nielsen LK, Jensen PR.

Biotechnol Appl Biochem. 2008 May;50(Pt 1):25-33.

PMID:
17824842
15.

Metabolic pathway analysis of a recombinant yeast for rational strain development.

Carlson R, Fell D, Srienc F.

Biotechnol Bioeng. 2002 Jul 20;79(2):121-34.

PMID:
12115428
16.

Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation.

Lidén G, Persson A, Gustafsson L, Niklasson C.

Appl Microbiol Biotechnol. 1995 Nov;43(6):1034-8.

PMID:
8590653
17.
18.

Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.

Da Silva NA, Srikrishnan S.

FEMS Yeast Res. 2012 Mar;12(2):197-214. doi: 10.1111/j.1567-1364.2011.00769.x. Epub 2012 Jan 12. Review.

19.

Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst.

Yoshida H, Hara KY, Kiriyama K, Nakayama H, Okazaki F, Matsuda F, Ogino C, Fukuda H, Kondo A.

Appl Microbiol Biotechnol. 2011 Aug;91(4):1001-6. doi: 10.1007/s00253-011-3196-4. Epub 2011 May 14.

PMID:
21573687
20.

Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway.

Kocharin K, Siewers V, Nielsen J.

Biotechnol Bioeng. 2013 Aug;110(8):2216-24. doi: 10.1002/bit.24888. Epub 2013 Mar 26.

PMID:
23456608
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk