Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 103

Similar articles for PubMed (Select 22394279)

1.

Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica.

Dekkers S, Bouwmeester H, Bos PM, Peters RJ, Rietveld AG, Oomen AG.

Nanotoxicology. 2013 Jun;7(4):367-77. doi: 10.3109/17435390.2012.662250. Epub 2012 Mar 7.

PMID:
22394279
2.

Presence and risks of nanosilica in food products.

Dekkers S, Krystek P, Peters RJ, Lankveld DP, Bokkers BG, van Hoeven-Arentzen PH, Bouwmeester H, Oomen AG.

Nanotoxicology. 2011 Sep;5(3):393-405. doi: 10.3109/17435390.2010.519836. Epub 2010 Sep 24.

PMID:
20868236
3.

The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.

Fruijtier-Pölloth C.

Toxicology. 2012 Apr 11;294(2-3):61-79. doi: 10.1016/j.tox.2012.02.001. Epub 2012 Feb 13. Review.

4.

Surface modification of amorphous nanosilica particles suppresses nanosilica-induced cytotoxicity, ROS generation, and DNA damage in various mammalian cells.

Yoshida T, Yoshioka Y, Matsuyama K, Nakazato Y, Tochigi S, Hirai T, Kondoh S, Nagano K, Abe Y, Kamada H, Tsunoda S, Nabeshi H, Yoshikawa T, Tsutsumi Y.

Biochem Biophys Res Commun. 2012 Nov 2;427(4):748-52. doi: 10.1016/j.bbrc.2012.09.132. Epub 2012 Oct 5.

PMID:
23044420
5.

Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice.

Yoshida T, Yoshioka Y, Tochigi S, Hirai T, Uji M, Ichihashi K, Nagano K, Abe Y, Kamada H, Tsunoda S, Nabeshi H, Higashisaka K, Yoshikawa T, Tsutsumi Y.

Part Fibre Toxicol. 2013 Aug 20;10:41. doi: 10.1186/1743-8977-10-41.

6.

The nanosilica hazard: another variable entity.

Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH.

Part Fibre Toxicol. 2010 Dec 3;7(1):39. doi: 10.1186/1743-8977-7-39. Review.

7.

Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.

Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N.

IET Nanobiotechnol. 2013 Sep;7(3):70-7. doi: 10.1049/iet-nbt.2012.0048.

PMID:
24028804
8.

Amorphous nanosilica particles induce ROS generation in Langerhans cells.

Yoshida T, Yoshikawa T, Nabeshi H, Matsuyama K, Hirai T, Akase T, Yoshioka Y, Itoh N, Tsutsumi Y.

Pharmazie. 2012 Aug;67(8):740-1.

PMID:
22957442
9.

Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model.

Park YH, Kim JN, Jeong SH, Choi JE, Lee SH, Choi BH, Lee JP, Sohn KH, Park KL, Kim MK, Son SW.

Toxicology. 2010 Jan 12;267(1-3):178-81. doi: 10.1016/j.tox.2009.10.011. Epub 2009 Oct 20.

PMID:
19850098
10.

[Safety assessment of nanomaterials in reproductive developmental field].

Yamashita K, Yoshioka Y.

Yakugaku Zasshi. 2012;132(3):331-5. Review. Japanese.

11.

Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes.

Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Tochigi S, Kondoh S, Hirai T, Akase T, Nagano K, Abe Y, Yoshioka Y, Kamada H, Itoh N, Tsunoda S, Tsutsumi Y.

Part Fibre Toxicol. 2011 Jan 15;8:1. doi: 10.1186/1743-8977-8-1.

12.

Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation.

Michel K, Scheel J, Karsten S, Stelter N, Wind T.

Nanotoxicology. 2013 Aug;7(5):974-88. doi: 10.3109/17435390.2012.689881. Epub 2012 Jun 14.

13.

Toxicity assessment of silica nanoparticles, functionalised silica nanoparticles, and HASE-grafted silica nanoparticles.

Clément L, Zenerino A, Hurel C, Amigoni S, Taffin de Givenchy E, Guittard F, Marmier N.

Sci Total Environ. 2013 Apr 15;450-451:120-8. doi: 10.1016/j.scitotenv.2013.01.042. Epub 2013 Mar 5.

PMID:
23474257
14.

Novel insights into the risk assessment of the nanomaterial synthetic amorphous silica, additive E551, in food.

van Kesteren PC, Cubadda F, Bouwmeester H, van Eijkeren JC, Dekkers S, de Jong WH, Oomen AG.

Nanotoxicology. 2015 May;9(4):442-52. doi: 10.3109/17435390.2014.940408. Epub 2014 Jul 18.

PMID:
25033893
15.

Liver injury induced by thirty- and fifty-nanometer-diameter silica nanoparticles.

Isoda K, Tetsuka E, Shimizu Y, Saitoh K, Ishida I, Tezuka M.

Biol Pharm Bull. 2013;36(3):370-5. Epub 2012 Dec 25.

16.

Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects.

Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Österle W, Kneipp J.

Anal Bioanal Chem. 2011 May;400(5):1367-73. doi: 10.1007/s00216-011-4893-7. Epub 2011 Apr 9.

PMID:
21479547
17.

Synthesis and study of properties of dental resin composites with different nanosilica particles size.

Karabela MM, Sideridou ID.

Dent Mater. 2011 Aug;27(8):825-35. doi: 10.1016/j.dental.2011.04.008. Epub 2011 May 17.

PMID:
21592549
18.

Methods for studying toxicity of silica-based nanomaterials to living cells.

Zhao Y, Jin Y, Hanson A, Wu M, Zhao JX.

Methods Mol Biol. 2013;1026:187-94. doi: 10.1007/978-1-62703-468-5_15.

PMID:
23749579
19.

Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis.

Schaller J, Brackhage C, Paasch S, Brunner E, Bäucker E, Dudel EG.

Sci Total Environ. 2013 Jan 1;442:6-9. doi: 10.1016/j.scitotenv.2012.10.016. Epub 2012 Nov 21.

PMID:
23178503
20.

Suppression of nanosilica particle-induced inflammation by surface modification of the particles.

Morishige T, Yoshioka Y, Inakura H, Tanabe A, Narimatsu S, Yao X, Monobe Y, Imazawa T, Tsunoda S, Tsutsumi Y, Mukai Y, Okada N, Nakagawa S.

Arch Toxicol. 2012 Aug;86(8):1297-307. doi: 10.1007/s00204-012-0823-5. Epub 2012 Mar 15.

PMID:
22418595
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk