Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 94

Similar articles for PubMed (Select 22387186)

1.

Identifying a small set of marker genes using minimum expected cost of misclassification.

Huang SH, Mo D, Meller J, Wagner M.

Artif Intell Med. 2012 May;55(1):51-9. doi: 10.1016/j.artmed.2012.01.004. Epub 2012 Mar 3.

PMID:
22387186
2.

An entropy-based gene selection method for cancer classification using microarray data.

Liu X, Krishnan A, Mondry A.

BMC Bioinformatics. 2005 Mar 24;6:76.

3.

HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data.

Wang Y, Makedon FS, Ford JC, Pearlman J.

Bioinformatics. 2005 Apr 15;21(8):1530-7. Epub 2004 Dec 7.

4.

What should be expected from feature selection in small-sample settings.

Sima C, Dougherty ER.

Bioinformatics. 2006 Oct 1;22(19):2430-6. Epub 2006 Jul 26.

5.

A novel feature selection approach for biomedical data classification.

Peng Y, Wu Z, Jiang J.

J Biomed Inform. 2010 Feb;43(1):15-23. doi: 10.1016/j.jbi.2009.07.008. Epub 2009 Jul 30.

6.

Mixture classification model based on clinical markers for breast cancer prognosis.

Zeng T, Liu J.

Artif Intell Med. 2010 Feb-Mar;48(2-3):129-37. doi: 10.1016/j.artmed.2009.07.008. Epub 2009 Dec 14.

PMID:
20005686
8.

A blocking strategy to improve gene selection for classification of gene expression data.

Bontempi G.

IEEE/ACM Trans Comput Biol Bioinform. 2007 Apr-Jun;4(2):293-300.

PMID:
17473321
9.
10.
11.

Gene selection algorithm by combining reliefF and mRMR.

Zhang Y, Ding C, Li T.

BMC Genomics. 2008 Sep 16;9 Suppl 2:S27. doi: 10.1186/1471-2164-9-S2-S27.

12.

Optimal search-based gene subset selection for gene array cancer classification.

Li J, Su H, Chen H, Futscher BW.

IEEE Trans Inf Technol Biomed. 2007 Jul;11(4):398-405.

PMID:
17674622
13.

Is cross-validation better than resubstitution for ranking genes?

Braga-Neto U, Hashimoto R, Dougherty ER, Nguyen DV, Carroll RJ.

Bioinformatics. 2004 Jan 22;20(2):253-8.

14.

Recursive feature selection with significant variables of support vectors.

Tsai CA, Huang CH, Chang CW, Chen CH.

Comput Math Methods Med. 2012;2012:712542. doi: 10.1155/2012/712542. Epub 2012 Aug 15.

15.

Wrapper-filter feature selection algorithm using a memetic framework.

Zhu Z, Ong YS, Dash M.

IEEE Trans Syst Man Cybern B Cybern. 2007 Feb;37(1):70-6.

PMID:
17278560
16.

Feature selection for gene expression using model-based entropy.

Zhu S, Wang D, Yu K, Li T, Gong Y.

IEEE/ACM Trans Comput Biol Bioinform. 2010 Jan-Mar;7(1):25-36. doi: 10.1109/TCBB.2008.35.

PMID:
20150666
17.

Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets.

Gormley M, Dampier W, Ertel A, Karacali B, Tozeren A.

BMC Bioinformatics. 2007 Oct 26;8:415.

18.

A supervised approach for identifying discriminating genotype patterns and its application to breast cancer data.

Yosef N, Yakhini Z, Tsalenko A, Kristensen V, Børresen-Dale AL, Ruppin E, Sharan R.

Bioinformatics. 2007 Jan 15;23(2):e91-8.

19.

Informative SNP selection methods based on SNP prediction.

He J, Zelikovsky A.

IEEE Trans Nanobioscience. 2007 Mar;6(1):60-7.

PMID:
17393851
20.

Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers.

Long N, Gianola D, Rosa GJ, Weigel KA, Avendaño S.

J Anim Breed Genet. 2007 Dec;124(6):377-89.

PMID:
18076475
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk