Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 120

Similar articles for PubMed (Select 22360725)

1.

Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O.

Thibault G, Houry WA.

J Phys Chem B. 2012 Jun 14;116(23):6717-24. doi: 10.1021/jp212024b. Epub 2012 Mar 6.

PMID:
22360725
2.

Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX.

Thibault G, Yudin J, Wong P, Tsitrin V, Sprangers R, Zhao R, Houry WA.

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17724-9. Epub 2006 Nov 7.

3.

The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function.

Wojtyra UA, Thibault G, Tuite A, Houry WA.

J Biol Chem. 2003 Dec 5;278(49):48981-90. Epub 2003 Aug 23.

4.

Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.

Thibault G, Tsitrin Y, Davidson T, Gribun A, Houry WA.

EMBO J. 2006 Jul 26;25(14):3367-76. Epub 2006 Jun 29.

5.

Structural basis of SspB-tail recognition by the zinc binding domain of ClpX.

Park EY, Lee BG, Hong SB, Kim HW, Jeon H, Song HK.

J Mol Biol. 2007 Mar 23;367(2):514-26. Epub 2007 Jan 9.

PMID:
17258768
6.

Solution structure of the dimeric zinc binding domain of the chaperone ClpX.

Donaldson LW, Wojtyra U, Houry WA.

J Biol Chem. 2003 Dec 5;278(49):48991-6. Epub 2003 Oct 1.

7.

Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species.

Chowdhury T, Chien P, Ebrahim S, Sauer RT, Baker TA.

Protein Sci. 2010 Feb;19(2):242-54. doi: 10.1002/pro.306.

8.

Trans-targeting of protease substrates by conformationally activating a regulable ClpX-recognition motif.

Marshall-Batty KR, Nakai H.

Mol Microbiol. 2008 Feb;67(4):920-33. doi: 10.1111/j.1365-2958.2007.06099.x. Epub 2008 Jan 7.

PMID:
18179597
9.

The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP-ClpX protease, is a novel molecular chaperone.

Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B, Jonsen M, Graves B, Georgopoulos C, Zylicz M.

EMBO J. 1995 May 1;14(9):1867-77.

10.

Functional domains of the ClpA and ClpX molecular chaperones identified by limited proteolysis and deletion analysis.

Singh SK, Rozycki J, Ortega J, Ishikawa T, Lo J, Steven AC, Maurizi MR.

J Biol Chem. 2001 Aug 3;276(31):29420-9. Epub 2001 May 9.

11.

A degradation signal recognition in prokaryotes.

Park EY, Song HK.

J Synchrotron Radiat. 2008 May;15(Pt 3):246-9. doi: 10.1107/S0909049507062826. Epub 2008 Apr 18.

12.

Activation of a dormant ClpX recognition motif of bacteriophage Mu repressor by inducing high local flexibility.

Marshall-Batty KR, Nakai H.

J Biol Chem. 2008 Apr 4;283(14):9060-70. doi: 10.1074/jbc.M705508200. Epub 2008 Jan 28.

13.
14.

Altered specificity of a AAA+ protease.

Farrell CM, Baker TA, Sauer RT.

Mol Cell. 2007 Jan 12;25(1):161-6.

15.

The interplay of ClpXP with the cell division machinery in Escherichia coli.

Camberg JL, Hoskins JR, Wickner S.

J Bacteriol. 2011 Apr;193(8):1911-8. doi: 10.1128/JB.01317-10. Epub 2011 Feb 11.

16.

Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX.

Abdelhakim AH, Oakes EC, Sauer RT, Baker TA.

Mol Cell. 2008 Apr 11;30(1):39-50. doi: 10.1016/j.molcel.2008.02.013.

17.

Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry.

Maglica Z, Kolygo K, Weber-Ban E.

Structure. 2009 Apr 15;17(4):508-16. doi: 10.1016/j.str.2009.02.014.

18.

Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease.

Gonciarz-Swiatek M, Wawrzynow A, Um SJ, Learn BA, McMacken R, Kelley WL, Georgopoulos C, Sliekers O, Zylicz M.

J Biol Chem. 1999 May 14;274(20):13999-4005.

19.

Structure-function analysis of the zinc-binding region of the Clpx molecular chaperone.

Banecki B, Wawrzynow A, Puzewicz J, Georgopoulos C, Zylicz M.

J Biol Chem. 2001 Jun 1;276(22):18843-8. Epub 2001 Mar 13.

20.

Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine.

Glynn SE, Nager AR, Baker TA, Sauer RT.

Nat Struct Mol Biol. 2012 May 6;19(6):616-22. doi: 10.1038/nsmb.2288.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk