Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 175

1.

Enhanced tumor treatment using biofunctional indocyanine green-containing nanostructure by intratumoral or intravenous injection.

Zheng X, Zhou F, Wu B, Chen WR, Xing D.

Mol Pharm. 2012 Mar 5;9(3):514-22. doi: 10.1021/mp200526m. Epub 2012 Feb 22.

2.

Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy.

Zheng X, Xing D, Zhou F, Wu B, Chen WR.

Mol Pharm. 2011 Apr 4;8(2):447-56. doi: 10.1021/mp100301t. Epub 2011 Jan 14.

PMID:
21197955
3.

Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy.

Ma Y, Tong S, Bao G, Gao C, Dai Z.

Biomaterials. 2013 Oct;34(31):7706-14. doi: 10.1016/j.biomaterials.2013.07.007. Epub 2013 Jul 17.

PMID:
23871538
4.

Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study.

Wu L, Fang S, Shi S, Deng J, Liu B, Cai L.

Biomacromolecules. 2013 Sep 9;14(9):3027-33. doi: 10.1021/bm400839b. Epub 2013 Aug 13.

PMID:
23941524
5.

Effect of polyethylene glycol coatings on uptake of indocyanine green loaded nanocapsules by human spleen macrophages in vitro.

Bahmani B, Gupta S, Upadhyayula S, Vullev VI, Anvari B.

J Biomed Opt. 2011 May;16(5):051303. doi: 10.1117/1.3574761.

PMID:
21639563
6.

Short PEG-linkers improve the performance of targeted, activatable monoclonal antibody-indocyanine green optical imaging probes.

Sano K, Nakajima T, Miyazaki K, Ohuchi Y, Ikegami T, Choyke PL, Kobayashi H.

Bioconjug Chem. 2013 May 15;24(5):811-6. doi: 10.1021/bc400050k. Epub 2013 May 3.

7.

Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy.

Zheng M, Yue C, Ma Y, Gong P, Zhao P, Zheng C, Sheng Z, Zhang P, Wang Z, Cai L.

ACS Nano. 2013 Mar 26;7(3):2056-67. doi: 10.1021/nn400334y. Epub 2013 Feb 22.

PMID:
23413798
8.

In vivo photoacoustic therapy with cancer-targeted indocyanine green-containing nanoparticles.

Zhong J, Yang S, Zheng X, Zhou T, Xing D.

Nanomedicine (Lond). 2013 Jun;8(6):903-19. doi: 10.2217/nnm.12.123. Epub 2012 Sep 10.

PMID:
22963234
9.

Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging.

Sharma P, Bengtsson NE, Walter GA, Sohn HB, Zhou G, Iwakuma N, Zeng H, Grobmyer SR, Scott EW, Moudgil BM.

Small. 2012 Sep 24;8(18):2856-68. doi: 10.1002/smll.201200258. Epub 2012 Jun 29.

PMID:
22744832
10.

Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy.

Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, Chen SJ.

Biomaterials. 2012 Apr;33(11):3270-8. doi: 10.1016/j.biomaterials.2012.01.035. Epub 2012 Jan 29.

PMID:
22289264
11.

Functional single-walled carbon nanotubes based on an integrin alpha v beta 3 monoclonal antibody for highly efficient cancer cell targeting.

Ou Z, Wu B, Xing D, Zhou F, Wang H, Tang Y.

Nanotechnology. 2009 Mar 11;20(10):105102. doi: 10.1088/0957-4484/20/10/105102. Epub 2009 Feb 16.

PMID:
19417509
12.

Indocyanine Green-Encapsulated Hybrid Polymeric Nanomicelles for Photothermal Cancer Therapy.

Jian WH, Yu TW, Chen CJ, Huang WC, Chiu HC, Chiang WH.

Langmuir. 2015 Jun 9;31(22):6202-10. doi: 10.1021/acs.langmuir.5b00963. Epub 2015 May 27.

PMID:
25985856
13.

Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor.

Martirosyan NL, Cavalcanti DD, Eschbacher JM, Delaney PM, Scheck AC, Abdelwahab MG, Nakaji P, Spetzler RF, Preul MC.

J Neurosurg. 2011 Dec;115(6):1131-8. doi: 10.3171/2011.8.JNS11559. Epub 2011 Sep 16.

PMID:
21923240
14.

Comparative study of the optical and heat generation properties of IR820 and indocyanine green.

Fernandez-Fernandez A, Manchanda R, Lei T, Carvajal DA, Tang Y, Kazmi SZ, McGoron AJ.

Mol Imaging. 2012 Apr;11(2):99-113.

15.

Improving drug accumulation and photothermal efficacy in tumor depending on size of ICG loaded lipid-polymer nanoparticles.

Zhao P, Zheng M, Yue C, Luo Z, Gong P, Gao G, Sheng Z, Zheng C, Cai L.

Biomaterials. 2014 Jul;35(23):6037-46. doi: 10.1016/j.biomaterials.2014.04.019. Epub 2014 Apr 26.

PMID:
24776486
16.

PEG conjugation of a near-infrared fluorescent probe for noninvasive dual imaging of lung deposition and gene expression by pulmonary gene delivery.

Okuda T, Kobayashi Y, Yanamoto S, Okamoto H.

J Drug Target. 2012 Nov;20(9):801-12. doi: 10.3109/1061186X.2012.722639. Epub 2012 Sep 26.

PMID:
23009266
17.

Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.

Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D, Gong P, Gao G, Zhang P, Ma Y, Cai L.

ACS Nano. 2014 Dec 23;8(12):12310-22. doi: 10.1021/nn5062386. Epub 2014 Dec 8.

PMID:
25454579
18.

Hyperthermia-enhanced indocyanine green delivery for laser-induced thermal ablation of carcinomas.

Barnes KD, Shafirstein G, Webber JS, Koonce NA, Harris Z, Griffin RJ.

Int J Hyperthermia. 2013 Aug;29(5):474-9. doi: 10.3109/02656736.2013.817615.

19.

Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging.

Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L.

Biomaterials. 2012 Aug;33(22):5603-9. doi: 10.1016/j.biomaterials.2012.04.044. Epub 2012 May 9.

PMID:
22575835
20.

The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power.

Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z.

Biomaterials. 2012 Mar;33(7):2206-14. doi: 10.1016/j.biomaterials.2011.11.064. Epub 2011 Dec 12.

PMID:
22169821
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk