Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Transcriptional response of the sulfur chemolithoautotroph Thiomicrospira crunogena to dissolved inorganic carbon limitation.

Dobrinski KP, Enkemann SA, Yoder SJ, Haller E, Scott KM.

J Bacteriol. 2012 Apr;194(8):2074-81. doi: 10.1128/JB.06504-11. Epub 2012 Feb 10.

2.

Expression and function of four carbonic anhydrase homologs in the deep-sea chemolithoautotroph Thiomicrospira crunogena.

Dobrinski KP, Boller AJ, Scott KM.

Appl Environ Microbiol. 2010 Jun;76(11):3561-7. doi: 10.1128/AEM.00064-10. Epub 2010 Apr 16.

3.

Dissolved inorganic carbon uptake in Thiomicrospira crunogena XCL-2 is Δp- and ATP-sensitive and enhances RubisCO-mediated carbon fixation.

Menning KJ, Menon BB, Fox G; USF MCB4404L 2012, Scott KM.

Arch Microbiol. 2016 Mar;198(2):149-59. doi: 10.1007/s00203-015-1172-6. Epub 2015 Nov 18.

PMID:
26581415
4.

The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2.

Scott KM, Sievert SM, Abril FN, Ball LA, Barrett CJ, Blake RA, Boller AJ, Chain PS, Clark JA, Davis CR, Detter C, Do KF, Dobrinski KP, Faza BI, Fitzpatrick KA, Freyermuth SK, Harmer TL, Hauser LJ, Hügler M, Kerfeld CA, Klotz MG, Kong WW, Land M, Lapidus A, Larimer FW, Longo DL, Lucas S, Malfatti SA, Massey SE, Martin DD, McCuddin Z, Meyer F, Moore JL, Ocampo LH Jr, Paul JH, Paulsen IT, Reep DK, Ren Q, Ross RL, Sato PY, Thomas P, Tinkham LE, Zeruth GT.

PLoS Biol. 2006 Nov;4(12):e383.

5.

The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena.

Dobrinski KP, Longo DL, Scott KM.

J Bacteriol. 2005 Aug;187(16):5761-6. No abstract available.

6.

Metagenomic comparison of two Thiomicrospira lineages inhabiting contrasting deep-sea hydrothermal environments.

Brazelton WJ, Baross JA.

PLoS One. 2010 Oct 21;5(10):e13530. doi: 10.1371/journal.pone.0013530.

9.

Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803.

Zhang Z, Pendse ND, Phillips KN, Cotner JB, Khodursky A.

BMC Genomics. 2008 Jul 21;9:344. doi: 10.1186/1471-2164-9-344.

10.

Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803.

Eisenhut M, Aguirre von Wobeser E, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HC, Hagemann M.

Plant Physiol. 2007 Aug;144(4):1946-59. Epub 2007 Jun 28.

11.

Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803.

Hackenberg C, Huege J, Engelhardt A, Wittink F, Laue M, Matthijs HC, Kopka J, Bauwe H, Hagemann M.

Microbiology. 2012 Feb;158(Pt 2):398-413. doi: 10.1099/mic.0.054544-0. Epub 2011 Nov 17.

PMID:
22096149
15.
16.

Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria.

Babujee L, Apodaca J, Balakrishnan V, Liss P, Kiley PJ, Charkowski AO, Glasner JD, Perna NT.

BMC Genomics. 2012 Mar 22;13:110. doi: 10.1186/1471-2164-13-110.

18.

A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage.

Hansen M, Perner M.

ISME J. 2015 Mar;9(3):696-707. doi: 10.1038/ismej.2014.173. Epub 2014 Sep 16.

20.

Acclimation to low [CO(2)] by an inorganic carbon-concentrating mechanism in Cyanophora paradoxa.

Burey SC, Poroyko V, Ergen ZN, Fathi-Nejad S, Schüller C, Ohnishi N, Fukuzawa H, Bohnert HJ, Löffelhardt W.

Plant Cell Environ. 2007 Nov;30(11):1422-35.

Items per page

Supplemental Content

Write to the Help Desk