Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 136

1.

Modulation of noncanonical TGF-β signaling prevents cleft palate in Tgfbr2 mutant mice.

Iwata J, Hacia JG, Suzuki A, Sanchez-Lara PA, Urata M, Chai Y.

J Clin Invest. 2012 Mar 1;122(3):873-85. doi: 10.1172/JCI61498. Epub 2012 Feb 13.

PMID:
22326956
[PubMed - indexed for MEDLINE]
Free PMC Article
2.

Modulation of lipid metabolic defects rescues cleft palate in Tgfbr2 mutant mice.

Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Chai Y.

Hum Mol Genet. 2014 Jan 1;23(1):182-93. doi: 10.1093/hmg/ddt410. Epub 2013 Aug 23.

PMID:
23975680
[PubMed - indexed for MEDLINE]
3.

TGF-β-activated kinase 1 (Tak1) mediates agonist-induced Smad activation and linker region phosphorylation in embryonic craniofacial neural crest-derived cells.

Yumoto K, Thomas PS, Lane J, Matsuzaki K, Inagaki M, Ninomiya-Tsuji J, Scott GJ, Ray MK, Ishii M, Maxson R, Mishina Y, Kaartinen V.

J Biol Chem. 2013 May 10;288(19):13467-80. doi: 10.1074/jbc.M112.431775. Epub 2013 Apr 1.

PMID:
23546880
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.

Xu X, Han J, Ito Y, Bringas P Jr, Urata MM, Chai Y.

Dev Biol. 2006 Sep 1;297(1):238-48. Epub 2006 May 19.

PMID:
16780827
[PubMed - indexed for MEDLINE]
Free Article
5.

CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development.

Parada C, Li J, Iwata J, Suzuki A, Chai Y.

Mol Cell Biol. 2013 Sep;33(17):3482-93. doi: 10.1128/MCB.00615-13. Epub 2013 Jul 1.

PMID:
23816882
[PubMed - indexed for MEDLINE]
Free PMC Article
6.

Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.

Iwata J, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y.

J Biol Chem. 2012 Jan 20;287(4):2353-63. doi: 10.1074/jbc.M111.280974. Epub 2011 Nov 28.

PMID:
22123828
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis.

Gallo EM, Loch DC, Habashi JP, Calderon JF, Chen Y, Bedja D, van Erp C, Gerber EE, Parker SJ, Sauls K, Judge DP, Cooke SK, Lindsay ME, Rouf R, Myers L, ap Rhys CM, Kent KC, Norris RA, Huso DL, Dietz HC.

J Clin Invest. 2014 Jan 2;124(1):448-60. doi: 10.1172/JCI69666. Epub 2013 Dec 20.

PMID:
24355923
[PubMed - indexed for MEDLINE]
Free PMC Article
8.

Epithelial and ectomesenchymal role of the type I TGF-beta receptor ALK5 during facial morphogenesis and palatal fusion.

Dudas M, Kim J, Li WY, Nagy A, Larsson J, Karlsson S, Chai Y, Kaartinen V.

Dev Biol. 2006 Aug 15;296(2):298-314. Epub 2006 May 27.

PMID:
16806156
[PubMed - indexed for MEDLINE]
Free PMC Article
9.

Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.

Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y.

Development. 2003 Nov;130(21):5269-80.

PMID:
12975342
[PubMed - indexed for MEDLINE]
Free Article
10.

Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.

Pelikan RC, Iwata J, Suzuki A, Chai Y, Hacia JG.

J Cell Biochem. 2013 Apr;114(4):796-807. doi: 10.1002/jcb.24417.

PMID:
23060211
[PubMed - indexed for MEDLINE]
Free PMC Article
11.

Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.

Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y.

J Biol Chem. 2013 Apr 12;288(15):10440-50. doi: 10.1074/jbc.M112.432286. Epub 2013 Mar 4.

PMID:
23460641
[PubMed - indexed for MEDLINE]
Free PMC Article
12.

TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner.

Zhao H, Oka K, Bringas P, Kaartinen V, Chai Y.

Dev Biol. 2008 Aug 1;320(1):19-29. doi: 10.1016/j.ydbio.2008.03.045. Epub 2008 Apr 15.

PMID:
18572160
[PubMed - indexed for MEDLINE]
Free PMC Article
13.

Noncanonical transforming growth factor β (TGFβ) signaling in cranial neural crest cells causes tongue muscle developmental defects.

Iwata J, Suzuki A, Pelikan RC, Ho TV, Chai Y.

J Biol Chem. 2013 Oct 11;288(41):29760-70. doi: 10.1074/jbc.M113.493551. Epub 2013 Aug 15.

PMID:
23950180
[PubMed - indexed for MEDLINE]
14.

TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway.

Trobridge P, Knoblaugh S, Washington MK, Munoz NM, Tsuchiya KD, Rojas A, Song X, Ulrich CM, Sasazuki T, Shirasawa S, Grady WM.

Gastroenterology. 2009 May;136(5):1680-8.e7. doi: 10.1053/j.gastro.2009.01.066. Epub 2009 Feb 4.

PMID:
19208363
[PubMed - indexed for MEDLINE]
Free PMC Article
15.

Transforming growth factor-beta (TGF-beta) type I receptor/ALK5-dependent activation of the GADD45beta gene mediates the induction of biglycan expression by TGF-beta.

Ungefroren H, Groth S, Ruhnke M, Kalthoff H, Fändrich F.

J Biol Chem. 2005 Jan 28;280(4):2644-52. Epub 2004 Nov 16.

PMID:
15546867
[PubMed - indexed for MEDLINE]
Free Article
16.

Inactivation of TGF-beta signaling in hepatocytes results in an increased proliferative response after partial hepatectomy.

Romero-Gallo J, Sozmen EG, Chytil A, Russell WE, Whitehead R, Parks WT, Holdren MS, Her MF, Gautam S, Magnuson M, Moses HL, Grady WM.

Oncogene. 2005 Apr 21;24(18):3028-41.

PMID:
15735717
[PubMed - indexed for MEDLINE]
17.

Transforming growth factor-beta regulates basal transcriptional regulatory machinery to control cell proliferation and differentiation in cranial neural crest-derived osteoprogenitor cells.

Iwata J, Hosokawa R, Sanchez-Lara PA, Urata M, Slavkin H, Chai Y.

J Biol Chem. 2010 Feb 12;285(7):4975-82. doi: 10.1074/jbc.M109.035105. Epub 2009 Dec 3.

PMID:
19959467
[PubMed - indexed for MEDLINE]
Free PMC Article
18.

Transforming growth factor-beta receptor type 1 (TGFBR1) is not associated with non-syndromic cleft lip with or without cleft palate in patients of Central European descent.

Reutter H, Birnbaum S, Mende M, de Assis NA, Hoffmann P, Lacava AD, Herms S, Braumann B, Scheer M, Lauster C, Schmidt G, Schiefke F, Dunsche A, Martini M, Knapp M, Kramer FJ, Nöthen MM, Mangold E.

Int J Pediatr Otorhinolaryngol. 2009 Oct;73(10):1334-8. doi: 10.1016/j.ijporl.2009.06.004. Epub 2009 Jul 7.

PMID:
19586667
[PubMed - indexed for MEDLINE]
19.

Quantitative analysis of TGFBR2 mutations in Marfan-syndrome-related disorders suggests a correlation between phenotypic severity and Smad signaling activity.

Horbelt D, Guo G, Robinson PN, Knaus P.

J Cell Sci. 2010 Dec 15;123(Pt 24):4340-50. doi: 10.1242/jcs.074773. Epub 2010 Nov 23.

PMID:
21098638
[PubMed - indexed for MEDLINE]
Free Article
20.

Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation.

Itoh F, Itoh S, Carvalho RL, Adachi T, Ema M, Goumans MJ, Larsson J, Karlsson S, Takahashi S, Mummery CL, Dijke PT, Kato M.

Lab Invest. 2009 Jul;89(7):800-10. doi: 10.1038/labinvest.2009.37. Epub 2009 Apr 27.

PMID:
19398960
[PubMed - indexed for MEDLINE]
Free Article

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk