Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts.

Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI.

PLoS Biol. 2011 Dec;9(12):e1001221. doi: 10.1371/journal.pbio.1001221. Epub 2011 Dec 20.

2.

Symbiotic Human Gut Bacteria with Variable Metabolic Priorities for Host Mucosal Glycans.

Pudlo NA, Urs K, Kumar SS, German JB, Mills DA, Martens EC.

MBio. 2015 Nov 10;6(6):e01282-15. doi: 10.1128/mBio.01282-15.

3.

Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont.

Martens EC, Roth R, Heuser JE, Gordon JI.

J Biol Chem. 2009 Jul 3;284(27):18445-57. doi: 10.1074/jbc.M109.008094. Epub 2009 Apr 29.

4.

Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont.

Martens EC, Chiang HC, Gordon JI.

Cell Host Microbe. 2008 Nov 13;4(5):447-57. doi: 10.1016/j.chom.2008.09.007.

5.

Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis.

Cameron EA, Kwiatkowski KJ, Lee BH, Hamaker BR, Koropatkin NM, Martens EC.

MBio. 2014 Sep 9;5(5):e01441-14. doi: 10.1128/mBio.01441-14.

6.

Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.

Ravcheev DA, Godzik A, Osterman AL, Rodionov DA.

BMC Genomics. 2013 Dec 12;14:873. doi: 10.1186/1471-2164-14-873.

7.

Sulfatases and a radical S-adenosyl-L-methionine (AdoMet) enzyme are key for mucosal foraging and fitness of the prominent human gut symbiont, Bacteroides thetaiotaomicron.

Benjdia A, Martens EC, Gordon JI, Berteau O.

J Biol Chem. 2011 Jul 22;286(29):25973-82. doi: 10.1074/jbc.M111.228841. Epub 2011 Apr 20.

8.

A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes.

Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H.

Nature. 2014 Feb 27;506(7489):498-502. doi: 10.1038/nature12907. Epub 2014 Jan 19.

9.

cis-Encoded Small RNAs, a Conserved Mechanism for Repression of Polysaccharide Utilization in Bacteroides.

Cao Y, Förstner KU, Vogel J, Smith CJ.

J Bacteriol. 2016 Aug 25;198(18):2410-8. doi: 10.1128/JB.00381-16. Print 2016 Sep 15.

PMID:
27353652
10.

Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts.

Karunatilaka KS, Cameron EA, Martens EC, Koropatkin NM, Biteen JS.

MBio. 2014 Nov 11;5(6):e02172. doi: 10.1128/mBio.02172-14.

11.

Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome.

McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK, Martens EC, Pudlo NA, Muegge BD, Henrissat B, Hettich RL, Gordon JI.

PLoS Biol. 2013;11(8):e1001637. doi: 10.1371/journal.pbio.1001637. Epub 2013 Aug 20.

12.

Prioritization of a plant polysaccharide over a mucus carbohydrate is enforced by a Bacteroides hybrid two-component system.

Lynch JB, Sonnenburg JL.

Mol Microbiol. 2012 Aug;85(3):478-91. doi: 10.1111/j.1365-2958.2012.08123.x. Epub 2012 Jul 5.

13.

Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut Symbiont.

Tauzin AS, Kwiatkowski KJ, Orlovsky NI, Smith CJ, Creagh AL, Haynes CA, Wawrzak Z, Brumer H, Koropatkin NM.

MBio. 2016 Apr 26;7(2):e02134-15. doi: 10.1128/mBio.02134-15.

14.
15.

Automatic prediction of polysaccharide utilization loci in Bacteroidetes species.

Terrapon N, Lombard V, Gilbert HJ, Henrissat B.

Bioinformatics. 2015 Mar 1;31(5):647-55. doi: 10.1093/bioinformatics/btu716. Epub 2014 Oct 28.

16.

Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla.

Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, Cantarel BL, Coutinho PM, Henrissat B, Crock LW, Russell A, Verberkmoes NC, Hettich RL, Gordon JI.

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5859-64. doi: 10.1073/pnas.0901529106. Epub 2009 Mar 24.

17.

Differential Metabolism of Exopolysaccharides from Probiotic Lactobacilli by the Human Gut Symbiont Bacteroides thetaiotaomicron.

Lammerts van Bueren A, Saraf A, Martens EC, Dijkhuizen L.

Appl Environ Microbiol. 2015 Jun 15;81(12):3973-83. doi: 10.1128/AEM.00149-15. Epub 2015 Apr 3.

18.

A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism.

Sonnenburg ED, Sonnenburg JL, Manchester JK, Hansen EE, Chiang HC, Gordon JI.

Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8834-9. Epub 2006 May 30.

19.

The Sus operon: a model system for starch uptake by the human gut Bacteroidetes.

Foley MH, Cockburn DW, Koropatkin NM.

Cell Mol Life Sci. 2016 Jul;73(14):2603-17. doi: 10.1007/s00018-016-2242-x. Epub 2016 May 2. Review.

PMID:
27137179
20.

Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V, Nair SK, Mackie RI, Cann I.

Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3708-17. doi: 10.1073/pnas.1406156111. Epub 2014 Aug 18.

Items per page

Supplemental Content

Write to the Help Desk