Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 74

Similar articles for PubMed (Select 22178878)

1.

The glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and enolase interact with the renal epithelial K+ channel ROMK2 and regulate its function.

Renigunta A, Mutig K, Rottermann K, Schlichthörl G, Preisig-Müller R, Daut J, Waldegger S, Renigunta V.

Cell Physiol Biochem. 2011;28(4):663-72. doi: 10.1159/000335761. Epub 2011 Dec 14.

PMID:
22178878
2.

The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the K(ATP) channel macromolecular complex and regulate its function.

Dhar-Chowdhury P, Harrell MD, Han SY, Jankowska D, Parachuru L, Morrissey A, Srivastava S, Liu W, Malester B, Yoshida H, Coetzee WA.

J Biol Chem. 2005 Nov 18;280(46):38464-70. Epub 2005 Sep 16.

3.

Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function.

Renigunta A, Renigunta V, Saritas T, Decher N, Mutig K, Waldegger S.

J Biol Chem. 2011 Jan 21;286(3):2224-35. doi: 10.1074/jbc.M110.149880. Epub 2010 Nov 16.

4.

Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte.

Tanemoto M, Vanoye CG, Dong K, Welch R, Abe T, Hebert SC, Xu JZ.

Am J Physiol Renal Physiol. 2000 Apr;278(4):F659-66.

5.

Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function.

Huang C, Sindic A, Hill CE, Hujer KM, Chan KW, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero MF, Miller RT.

Am J Physiol Renal Physiol. 2007 Mar;292(3):F1073-81. Epub 2006 Nov 22.

6.

PKA site mutations of ROMK2 channels shift the pH dependence to more alkaline values.

Leipziger J, MacGregor GG, Cooper GJ, Xu J, Hebert SC, Giebisch G.

Am J Physiol Renal Physiol. 2000 Nov;279(5):F919-26.

7.

Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome.

Starremans PG, van der Kemp AW, Knoers NV, van den Heuvel LP, Bindels RJ.

Pflugers Arch. 2002 Jan;443(3):466-72. Epub 2001 Oct 16.

PMID:
11810218
8.

A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.

McNicholas CM, Nason MW Jr, Guggino WB, Schwiebert EM, Hebert SC, Giebisch G, Egan ME.

Am J Physiol. 1997 Nov;273(5 Pt 2):F843-8.

9.

Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney.

Derst C, Hirsch JR, Preisig-Müller R, Wischmeyer E, Karschin A, Döring F, Thomzig A, Veh RW, Schlatter E, Kummer W, Daut J.

Kidney Int. 2001 Jun;59(6):2197-205.

10.

Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel.

Konstas AA, Koch JP, Tucker SJ, Korbmacher C.

J Biol Chem. 2002 Jul 12;277(28):25377-84. Epub 2002 May 6.

11.

Involvement of Golgin-160 in cell surface transport of renal ROMK channel: co-expression of Golgin-160 increases ROMK currents.

Bundis F, Neagoe I, Schwappach B, Steinmeyer K.

Cell Physiol Biochem. 2006;17(1-2):1-12. Epub 2006 Feb 7.

PMID:
16543716
12.

Stable, polarised, functional expression of Kir1.1b channel protein in Madin-Darby canine kidney cell line.

Ortega B, Millar ID, Beesley AH, Robson L, White SJ.

J Physiol. 2000 Oct 1;528 Pt 1:5-13.

13.
14.

Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A.

Yoo D, Kim BY, Campo C, Nance L, King A, Maouyo D, Welling PA.

J Biol Chem. 2003 Jun 20;278(25):23066-75. Epub 2003 Apr 8.

15.

Inactivating properties of recombinant ROMK2 channels expressed in mammalian cells.

Riochet DF, Mohammad-Panah R, Hebert SC, MacGregor GG, Baró I, Guihard G, Escande D.

Biochem Biophys Res Commun. 2001 Aug 17;286(2):376-80.

PMID:
11500048
16.

Glyceraldehyde 3-phosphate dehydrogenase serves as an accessory protein of the cardiac sarcolemmal K(ATP) channel.

Jovanović S, Du Q, Crawford RM, Budas GR, Stagljar I, Jovanović A.

EMBO Rep. 2005 Sep;6(9):848-52.

17.

Partially active channels produced by PKA site mutation of the cloned renal K+ channel, ROMK2 (kir1.2).

MacGregor GG, Xu JZ, McNicholas CM, Giebisch G, Hebert SC.

Am J Physiol. 1998 Sep;275(3 Pt 2):F415-22.

18.

Molecular site for nucleotide binding on an ATP-sensitive renal K+ channel (ROMK2).

McNicholas CM, Yang Y, Giebisch G, Hebert SC.

Am J Physiol. 1996 Aug;271(2 Pt 2):F275-85.

PMID:
8770158
19.

MUPP1 complexes renal K+ channels to alter cell surface expression and whole cell currents.

Sindic A, Huang C, Chen AP, Ding Y, Miller-Little WA, Che D, Romero MF, Miller RT.

Am J Physiol Renal Physiol. 2009 Jul;297(1):F36-45. doi: 10.1152/ajprenal.90559.2008. Epub 2009 May 6.

20.

An amino acid triplet in the NH2 terminus of rat ROMK1 determines interaction with SUR2B.

Dong K, Xu J, Vanoye CG, Welch R, MacGregor GG, Giebisch G, Hebert SC.

J Biol Chem. 2001 Nov 23;276(47):44347-53. Epub 2001 Sep 20.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk