Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 268

1.

Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.

Sasano Y, Watanabe D, Ukibe K, Inai T, Ohtsu I, Shimoi H, Takagi H.

J Biosci Bioeng. 2012 Apr;113(4):451-5. doi: 10.1016/j.jbiosc.2011.11.017. Epub 2011 Dec 16.

PMID:
22178024
[PubMed - indexed for MEDLINE]
2.

Insertion of transposon in the vicinity of SSK2 confers enhanced tolerance to furfural in Saccharomyces cerevisiae.

Kim HS, Kim NR, Kim W, Choi W.

Appl Microbiol Biotechnol. 2012 Jul;95(2):531-40. doi: 10.1007/s00253-012-4022-3. Epub 2012 May 26.

PMID:
22639140
[PubMed - indexed for MEDLINE]
3.

Overexpression of the transcription activator Msn2 enhances the fermentation ability of industrial baker's yeast in frozen dough.

Sasano Y, Haitani Y, Hashida K, Ohtsu I, Shima J, Takagi H.

Biosci Biotechnol Biochem. 2012;76(3):624-7.

PMID:
22451415
[PubMed - indexed for MEDLINE]
Free Article
4.
5.

Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.

Hasunuma T, Ismail KS, Nambu Y, Kondo A.

J Biosci Bioeng. 2014 Feb;117(2):165-9. doi: 10.1016/j.jbiosc.2013.07.007. Epub 2013 Aug 3.

PMID:
23916856
[PubMed - indexed for MEDLINE]
6.

Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p.

Watanabe D, Wu H, Noguchi C, Zhou Y, Akao T, Shimoi H.

Appl Environ Microbiol. 2011 Feb;77(3):934-41. doi: 10.1128/AEM.01869-10. Epub 2010 Dec 3.

PMID:
21131516
[PubMed - indexed for MEDLINE]
Free PMC Article
7.

Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.

Ishii J, Yoshimura K, Hasunuma T, Kondo A.

Appl Microbiol Biotechnol. 2013 Mar;97(6):2597-607. doi: 10.1007/s00253-012-4376-6. Epub 2012 Sep 22.

PMID:
23001007
[PubMed - indexed for MEDLINE]
8.

N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.

Du X, Takagi H.

Appl Microbiol Biotechnol. 2007 Jul;75(6):1343-51. Epub 2007 Mar 27.

PMID:
17387467
[PubMed - indexed for MEDLINE]
9.

Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.

Liu ZL, Ma M, Song M.

Mol Genet Genomics. 2009 Sep;282(3):233-44. doi: 10.1007/s00438-009-0461-7. Epub 2009 Jun 11.

PMID:
19517136
[PubMed - indexed for MEDLINE]
Free PMC Article
10.

Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1.

Jayakody LN, Horie K, Hayashi N, Kitagaki H.

Appl Microbiol Biotechnol. 2012 Apr;94(1):273-83. doi: 10.1007/s00253-012-3918-2. Epub 2012 Feb 7.

PMID:
22311646
[PubMed - indexed for MEDLINE]
11.

Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering.

Hong ME, Lee KS, Yu BJ, Sung YJ, Park SM, Koo HM, Kweon DH, Park JC, Jin YS.

J Biotechnol. 2010 Aug 20;149(1-2):52-9. doi: 10.1016/j.jbiotec.2010.06.006. Epub 2010 Jun 25.

PMID:
20600383
[PubMed - indexed for MEDLINE]
12.
13.

Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.

Watanabe M, Watanabe D, Akao T, Shimoi H.

J Biosci Bioeng. 2009 May;107(5):516-8. doi: 10.1016/j.jbiosc.2009.01.006.

PMID:
19393550
[PubMed - indexed for MEDLINE]
14.

Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.

Yu KO, Jung J, Ramzi AB, Choe SH, Kim SW, Park C, Han SO.

Enzyme Microb Technol. 2012 Sep 10;51(4):237-43. doi: 10.1016/j.enzmictec.2012.07.003. Epub 2012 Jul 16.

PMID:
22883559
[PubMed - indexed for MEDLINE]
15.

The control of the yeast H2O2 response by the Msn2/4 transcription factors.

Hasan R, Leroy C, Isnard AD, Labarre J, Boy-Marcotte E, Toledano MB.

Mol Microbiol. 2002 Jul;45(1):233-41.

PMID:
12100562
[PubMed - indexed for MEDLINE]
17.

Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

Sasano Y, Takahashi S, Shima J, Takagi H.

Int J Food Microbiol. 2010 Mar 31;138(1-2):181-5. doi: 10.1016/j.ijfoodmicro.2010.01.001. Epub 2010 Jan 11.

PMID:
20096471
[PubMed - indexed for MEDLINE]
18.

Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.

Liu ZL, Slininger PJ, Gorsich SW.

Appl Biochem Biotechnol. 2005 Spring;121-124:451-60.

PMID:
15917621
[PubMed - indexed for MEDLINE]
19.

Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains.

Hou L, Cao X, Wang C, Lu M.

Lett Appl Microbiol. 2009 Jul;49(1):14-9. doi: 10.1111/j.1472-765X.2009.02615.x. Epub 2009 Apr 17.

PMID:
19413773
[PubMed - indexed for MEDLINE]
20.

Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.

Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.

Appl Microbiol Biotechnol. 2006 Jul;71(3):339-49. Epub 2005 Oct 13.

PMID:
16222531
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk