Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors.

Selby CP, Sancar A.

Biochemistry. 2012 Jan 10;51(1):167-71. doi: 10.1021/bi201536w. Epub 2011 Dec 27.

2.

Crystal structure of archaeal photolyase from Sulfolobus tokodaii with two FAD molecules: implication of a novel light-harvesting cofactor.

Fujihashi M, Numoto N, Kobayashi Y, Mizushima A, Tsujimura M, Nakamura A, Kawarabayasi Y, Miki K.

J Mol Biol. 2007 Jan 26;365(4):903-10. Epub 2006 Oct 7.

PMID:
17107688
3.

A photolyase-like protein from Agrobacterium tumefaciens with an iron-sulfur cluster.

Oberpichler I, Pierik AJ, Wesslowski J, Pokorny R, Rosen R, Vugman M, Zhang F, Neubauer O, Ron EZ, Batschauer A, Lamparter T.

PLoS One. 2011;6(10):e26775. doi: 10.1371/journal.pone.0026775. Epub 2011 Oct 31.

4.

Photoreduction of the folate cofactor in members of the photolyase family.

Moldt J, Pokorny R, Orth C, Linne U, Geisselbrecht Y, Marahiel MA, Essen LO, Batschauer A.

J Biol Chem. 2009 Aug 7;284(32):21670-83. doi: 10.1074/jbc.M109.018697. Epub 2009 Jun 16.

5.
6.

Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity.

Huang Y, Baxter R, Smith BS, Partch CL, Colbert CL, Deisenhofer J.

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17701-6. Epub 2006 Nov 13.

7.

A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.

Selby CP, Sancar A.

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17696-700. Epub 2006 Oct 24.

8.

The class III cyclobutane pyrimidine dimer photolyase structure reveals a new antenna chromophore binding site and alternative photoreduction pathways.

Scheerer P, Zhang F, Kalms J, von Stetten D, Krauß N, Oberpichler I, Lamparter T.

J Biol Chem. 2015 May 1;290(18):11504-14. doi: 10.1074/jbc.M115.637868. Epub 2015 Mar 17.

9.
10.

A putative blue-light receptor from Drosophila melanogaster.

Okano S, Kanno S, Takao M, Eker AP, Isono K, Tsukahara Y, Yasui A.

Photochem Photobiol. 1999 Jan;69(1):108-13.

PMID:
10063806
11.

Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins.

Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, Todo T, Wei YF, Sancar A.

Biochemistry. 1996 Nov 5;35(44):13871-7.

PMID:
8909283
12.

Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803.

Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M, Todo T.

Nucleic Acids Res. 2000 Jun 15;28(12):2353-62.

13.

Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family.

Todo T, Ryo H, Yamamoto K, Toh H, Inui T, Ayaki H, Nomura T, Ikenaga M.

Science. 1996 Apr 5;272(5258):109-12.

PMID:
8600518
14.

The Trichoderma reesei Cry1 protein is a member of the cryptochrome/photolyase family with 6-4 photoproduct repair activity.

Guzmán-Moreno J, Flores-Martínez A, Brieba LG, Herrera-Estrella A.

PLoS One. 2014 Jun 25;9(6):e100625. doi: 10.1371/journal.pone.0100625. eCollection 2014.

15.

The Potorous CPD photolyase rescues a cryptochrome-deficient mammalian circadian clock.

Chaves I, Nijman RM, Biernat MA, Bajek MI, Brand K, da Silva AC, Saito S, Yagita K, Eker AP, van der Horst GT.

PLoS One. 2011;6(8):e23447. doi: 10.1371/journal.pone.0023447. Epub 2011 Aug 16.

16.

Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae.

Worthington EN, Kavakli IH, Berrocal-Tito G, Bondo BE, Sancar A.

J Biol Chem. 2003 Oct 3;278(40):39143-54. Epub 2003 Jul 22.

17.

Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.

Kottke T, Batschauer A, Ahmad M, Heberle J.

Biochemistry. 2006 Feb 28;45(8):2472-9.

PMID:
16489739
18.

DNA photolyases and cryptochromes.

Deisenhofer J.

Mutat Res. 2000 Aug 30;460(3-4):143-9. Review.

PMID:
10946225
19.

Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.

Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget FY, Bowler C.

Plant Cell Environ. 2010 Oct;33(10):1614-26. doi: 10.1111/j.1365-3040.2010.02168.x.

20.

Purification and characterization of a type III photolyase from Caulobacter crescentus.

Oztürk N, Kao YT, Selby CP, Kavakli IH, Partch CL, Zhong D, Sancar A.

Biochemistry. 2008 Sep 30;47(39):10255-61. doi: 10.1021/bi801085a. Epub 2008 Sep 5.

Items per page

Supplemental Content

Write to the Help Desk