Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 144

1.

Chiral index dependence of the G+ and G- Raman modes in semiconducting carbon nanotubes.

Telg H, Duque JG, Staiger M, Tu X, Hennrich F, Kappes MM, Zheng M, Maultzsch J, Thomsen C, Doorn SK.

ACS Nano. 2012 Jan 24;6(1):904-11. doi: 10.1021/nn2044356. Epub 2011 Dec 23.

PMID:
22175270
[PubMed - indexed for MEDLINE]
2.

Estimating the Raman cross sections of single carbon nanotubes.

Bohn JE, Etchegoin PG, Le Ru EC, Xiang R, Chiashi S, Maruyama S.

ACS Nano. 2010 Jun 22;4(6):3466-70. doi: 10.1021/nn100425k.

PMID:
20481553
[PubMed - indexed for MEDLINE]
3.

Experimental evidence of a mechanical coupling between layers in an individual double-walled carbon nanotube.

Levshov D, Than TX, Arenal R, Popov VN, Parret R, Paillet M, Jourdain V, Zahab AA, Michel T, Yuzyuk YI, Sauvajol JL.

Nano Lett. 2011 Nov 9;11(11):4800-4. doi: 10.1021/nl2026234. Epub 2011 Oct 21.

PMID:
22007874
[PubMed - indexed for MEDLINE]
4.

Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study.

Kalbac M, Hsieh YP, Farhat H, Kavan L, Hofmann M, Kong J, Dresselhaus MS.

Nano Lett. 2010 Nov 10;10(11):4619-26. doi: 10.1021/nl102727f. Epub 2010 Oct 12.

PMID:
20939607
[PubMed - indexed for MEDLINE]
5.

Raman spectroscopy of free-standing individual semiconducting single-wall carbon nanotubes.

Paillet M, Langlois S, Sauvajol JL, Marty L, Iaia A, Naud C, Bouchiat V, Bonnot AM.

J Phys Chem B. 2006 Jan 12;110(1):164-9.

PMID:
16471515
[PubMed - indexed for MEDLINE]
6.

In situ raman measurements of suspended individual single-walled carbon nanotubes under strain.

Lee SW, Jeong GH, Campbell EE.

Nano Lett. 2007 Sep;7(9):2590-5. Epub 2007 Aug 25.

PMID:
17718583
[PubMed - indexed for MEDLINE]
7.

Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.

Villalpando-Paez F, Muramatsu H, Kim YA, Farhat H, Endo M, Terrones M, Dresselhaus MS.

Nanoscale. 2010 Mar;2(3):406-11. doi: 10.1039/b9nr00268e. Epub 2009 Nov 24.

PMID:
20644824
[PubMed - indexed for MEDLINE]
8.

Temperature dependence of the Raman spectra of graphene and graphene multilayers.

Calizo I, Balandin AA, Bao W, Miao F, Lau CN.

Nano Lett. 2007 Sep;7(9):2645-9. Epub 2007 Aug 25.

PMID:
17718584
[PubMed - indexed for MEDLINE]
9.

A Raman study of CdSe and ZnSe nanostructures.

Teredesai PV, Deepak FL, Govindaraj A, Sood AK, Rao CN.

J Nanosci Nanotechnol. 2002 Oct;2(5):495-8.

PMID:
12908286
[PubMed - indexed for MEDLINE]
10.

Family behaviour of Raman-active phonon frequencies of single-wall nanotubes of C, BN and BC3.

Wang H, Cao X, Feng M, Wang Y, Jin Q, Ding D, Lan G.

Spectrochim Acta A Mol Biomol Spectrosc. 2009 Jan;71(5):1932-7. doi: 10.1016/j.saa.2008.07.032. Epub 2008 Aug 3.

PMID:
18838291
[PubMed - indexed for MEDLINE]
11.

Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering.

Strelchuk VV, Nikolenko AS, Gubanov VO, Biliy MM, Bulavin LA.

J Nanosci Nanotechnol. 2012 Nov;12(11):8671-5.

PMID:
23421263
[PubMed - indexed for MEDLINE]
12.

Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.

Dillon AC, Yudasaka M, Dresselhaus MS.

J Nanosci Nanotechnol. 2004 Sep;4(7):691-703. Review.

PMID:
15570946
[PubMed - indexed for MEDLINE]
13.

Studying disorder in graphite-based systems by Raman spectroscopy.

Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R.

Phys Chem Chem Phys. 2007 Mar 21;9(11):1276-91. Epub 2007 Jan 11. Review.

PMID:
17347700
[PubMed - indexed for MEDLINE]
14.

Using the G' Raman cross-section to understand the phonon dynamics in bilayer graphene systems.

Mafra DL, Kong J, Sato K, Saito R, Dresselhaus MS, Araujo PT.

Nano Lett. 2012 Jun 13;12(6):2883-7. doi: 10.1021/nl300477n. Epub 2012 May 31. Erratum in: Nano Lett. 2013 Jan 9;13(1):330.

PMID:
22620978
[PubMed - indexed for MEDLINE]
15.

Chirality distribution and transition energies of carbon nanotubes.

Telg H, Maultzsch J, Reich S, Hennrich F, Thomsen C.

Phys Rev Lett. 2004 Oct 22;93(17):177401. Epub 2004 Oct 18.

PMID:
15525124
[PubMed]
16.

Raman spectroscopy of single-wall boron nitride nanotubes.

Arenal R, Ferrari AC, Reich S, Wirtz L, Mevellec JY, Lefrant S, Rubio A, Loiseau A.

Nano Lett. 2006 Aug;6(8):1812-6.

PMID:
16895378
[PubMed - indexed for MEDLINE]
17.

Optical control of edge chirality in graphene.

Begliarbekov M, Sasaki K, Sul O, Yang EH, Strauf S.

Nano Lett. 2011 Nov 9;11(11):4874-8. doi: 10.1021/nl2027316. Epub 2011 Oct 25.

PMID:
22017391
[PubMed - indexed for MEDLINE]
18.

Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1).

Cong C, Yu T, Saito R, Dresselhaus GF, Dresselhaus MS.

ACS Nano. 2011 Mar 22;5(3):1600-5. doi: 10.1021/nn200010m. Epub 2011 Feb 23.

PMID:
21344883
[PubMed - indexed for MEDLINE]
19.

Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering.

Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS.

Phys Rev Lett. 2001 Feb 5;86(6):1118-21.

PMID:
11178024
[PubMed]
20.

Raman doping profiles of polyelectrolyte SWNTs in solution.

Dragin F, Pénicaud A, Iurlo M, Marcaccio M, Paolucci F, Anglaret E, Martel R.

ACS Nano. 2011 Dec 27;5(12):9892-7. doi: 10.1021/nn203591j. Epub 2011 Nov 30.

PMID:
22092255
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk