Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 81

1.

Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion.

Fei Z, He S, Li L, Ji W, Au CT.

Chem Commun (Camb). 2012 Jan 21;48(6):853-5. doi: 10.1039/c1cc15976c. Epub 2011 Dec 2.

PMID:
22138719
[PubMed]
2.

Formation of CeO2 nanotubes from Ce(OH)CO3 nanorods through Kirkendall diffusion.

Chen G, Sun S, Sun X, Fan W, You T.

Inorg Chem. 2009 Feb 16;48(4):1334-8. doi: 10.1021/ic801714z.

PMID:
19146432
[PubMed - indexed for MEDLINE]
3.

Monocrystalline spinel nanotube fabrication based on the Kirkendall effect.

Jin Fan H, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gösele U.

Nat Mater. 2006 Aug;5(8):627-31. Epub 2006 Jul 2.

PMID:
16845423
[PubMed]
4.

Highly sensitive and fast responding CO sensor based on Co3O4 nanorods.

Patil D, Patil P, Subramanian V, Joy PA, Potdar HS.

Talanta. 2010 Apr 15;81(1-2):37-43. doi: 10.1016/j.talanta.2009.11.034. Epub 2009 Nov 18.

PMID:
20188884
[PubMed - indexed for MEDLINE]
5.

Hierarchically porous Co3O4 hollow spheres with tunable pore structure and enhanced catalytic activity.

Wang CA, Li S, An L.

Chem Commun (Camb). 2013 Aug 28;49(67):7427-9. doi: 10.1039/c3cc43094d.

PMID:
23857083
[PubMed]
6.

Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system.

Coquay P, Peigney A, De Grave E, Flahaut E, Vandenberghe RE, Laurent C.

J Phys Chem B. 2005 Sep 29;109(38):17813-24.

PMID:
16853284
[PubMed]
7.

Hydrothermal fabrication and characterization of polycrystalline linneite (Co(3)S(4)) nanotubes based on the Kirkendall effect.

Chen X, Zhang Z, Qiu Z, Shi C, Li X.

J Colloid Interface Sci. 2007 Apr 1;308(1):271-5. Epub 2006 Dec 23.

PMID:
17215001
[PubMed]
8.

Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion.

Hu L, Peng Q, Li Y.

J Am Chem Soc. 2008 Dec 3;130(48):16136-7. doi: 10.1021/ja806400e.

PMID:
18998643
[PubMed]
9.

Modified Kirkendall effect for fabrication of magnetic nanotubes.

Wang Q, Geng B, Wang S, Ye Y, Tao B.

Chem Commun (Camb). 2010 Mar 21;46(11):1899-901. doi: 10.1039/b922134d. Epub 2010 Jan 13.

PMID:
20198246
[PubMed]
10.

Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.

Fan HJ, Gösele U, Zacharias M.

Small. 2007 Oct;3(10):1660-71. Review.

PMID:
17890644
[PubMed - indexed for MEDLINE]
11.

Synthesis and colloidal polymerization of ferromagnetic Au-Co nanoparticles into Au-Co3O4 nanowires.

Kim BY, Shim IB, Araci ZO, Saavedra SS, Monti OL, Armstrong NR, Sahoo R, Srivastava DN, Pyun J.

J Am Chem Soc. 2010 Mar 17;132(10):3234-5. doi: 10.1021/ja908481z.

PMID:
20163141
[PubMed]
12.

Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors.

Wang D, Wang Q, Wang T.

Inorg Chem. 2011 Jul 18;50(14):6482-92. doi: 10.1021/ic200309t. Epub 2011 Jun 14.

PMID:
21671652
[PubMed]
13.

Ferric molybdate nanotubes synthesized based on the Kirkendall effect and their catalytic property for propene epoxidation by air.

Wang L, Peng B, Guo X, Ding W, Chen Y.

Chem Commun (Camb). 2009 Mar 28;(12):1565-7. doi: 10.1039/b820350d. Epub 2009 Feb 2.

PMID:
19277391
[PubMed]
14.

Combustion of CH4/H2/air mixtures in catalytic microreactors.

Specchia S, Vella LD, Burelli S, Saracco G, Specchia V.

Chemphyschem. 2009 Mar 23;10(5):783-6. doi: 10.1002/cphc.200800697.

PMID:
19222040
[PubMed]
15.

Facile synthesis of hierarchical conducting polymer nanotubes derived from nanofibers and their application for controlled drug release.

Han J, Wang L, Guo R.

Macromol Rapid Commun. 2011 May 18;32(9-10):729-35. doi: 10.1002/marc.201000780. Epub 2011 Mar 25.

PMID:
21442681
[PubMed - indexed for MEDLINE]
16.

Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity.

Wang JX, Ma C, Choi Y, Su D, Zhu Y, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR.

J Am Chem Soc. 2011 Aug 31;133(34):13551-7. doi: 10.1021/ja204518x. Epub 2011 Aug 10.

PMID:
21780827
[PubMed]
17.

Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors.

Xiong S, Yuan C, Zhang X, Xi B, Qian Y.

Chemistry. 2009;15(21):5320-6. doi: 10.1002/chem.200802671.

PMID:
19350591
[PubMed]
18.

Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance.

Xie X, Shen W.

Nanoscale. 2009 Oct;1(1):50-60. doi: 10.1039/b9nr00155g. Epub 2009 Sep 15.

PMID:
20644860
[PubMed]
19.

Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries.

Shaju KM, Jiao F, Débart A, Bruce PG.

Phys Chem Chem Phys. 2007 Apr 21;9(15):1837-42. Epub 2007 Feb 28.

PMID:
17415496
[PubMed - indexed for MEDLINE]
20.

Linking soil O2, CO2, and CH4 concentrations in a Wetland soil: implications for CO2 and CH4 fluxes.

Elberling B, Askaer L, Jørgensen CJ, Joensen HP, Kühl M, Glud RN, Lauritsen FR.

Environ Sci Technol. 2011 Apr 15;45(8):3393-9. doi: 10.1021/es103540k. Epub 2011 Mar 17.

PMID:
21413790
[PubMed - indexed for MEDLINE]
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk