Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 95

Similar articles for PubMed (Select 22076273)

1.

Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo.

Watanabe H, Rajagopalan UM, Nakamichi Y, Igarashi KM, Kadono H, Tanifuji M.

Biomed Opt Express. 2011 Nov 1;2(11):3129-34. doi: 10.1364/BOE.2.003129. Epub 2011 Oct 25.

2.

In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy.

Watanabe H, Rajagopalan UM, Nakamichi Y, Igarashi KM, Madjarova VD, Kadono H, Tanifuji M.

Biomed Opt Express. 2011 Aug 1;2(8):2279-87. doi: 10.1364/BOE.2.002279. Epub 2011 Jul 15.

3.

Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

Hill NJ, Gupta D, Brunner P, Gunduz A, Adamo MA, Ritaccio A, Schalk G.

J Vis Exp. 2012 Jun 26;(64). pii: 3993. doi: 10.3791/3993.

4.

Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography.

Adhi M, Liu JJ, Qavi AH, Grulkowski I, Lu CD, Mohler KJ, Ferrara D, Kraus MF, Baumal CR, Witkin AJ, Waheed NK, Hornegger J, Fujimoto JG, Duker JS.

Am J Ophthalmol. 2014 Jun;157(6):1272-1281.e1. doi: 10.1016/j.ajo.2014.02.034. Epub 2014 Feb 18.

PMID:
24561169
5.

Integrated-optics-based swept-source optical coherence tomography.

Nguyen VD, Weiss N, Beeker W, Hoekman M, Leinse A, Heideman RG, van Leeuwen TG, Kalkman J.

Opt Lett. 2012 Dec 1;37(23):4820-2. doi: 10.1364/OL.37.004820.

PMID:
23202057
6.

Alterations in the neural and connective tissue components of glaucomatous cupping after glaucoma surgery using swept-source optical coherence tomography.

Yoshikawa M, Akagi T, Hangai M, Ohashi-Ikeda H, Takayama K, Morooka S, Kimura Y, Nakano N, Yoshimura N.

Invest Ophthalmol Vis Sci. 2014 Jan 23;55(1):477-84. doi: 10.1167/iovs.13-11897.

PMID:
24398100
7.

In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography.

Xie Y, Martini N, Hassler C, Kirch RD, Stieglitz T, Seifert A, Hofmann UG.

Front Neuroeng. 2014 Aug 21;7:34. doi: 10.3389/fneng.2014.00034. eCollection 2014.

8.

In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography.

Stanga PE, Sala-Puigdollers A, Caputo S, Jaberansari H, Cien M, Gray J, D'Souza Y, Charles SJ, Biswas S, Henson DB, McLeod D.

Am J Ophthalmol. 2014 Feb;157(2):397-404.e2. doi: 10.1016/j.ajo.2013.10.008. Epub 2013 Oct 22.

PMID:
24439443
9.

Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography.

Herz P, Chen Y, Aguirre A, Fujimoto J, Mashimo H, Schmitt J, Koski A, Goodnow J, Petersen C.

Opt Express. 2004 Jul 26;12(15):3532-42.

PMID:
19483882
10.

Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis.

Health Quality Ontario.

Ont Health Technol Assess Ser. 2009;9(13):1-22. Epub 2009 Sep 1.

11.

Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit.

Lee KK, Mariampillai A, Yu JX, Cadotte DW, Wilson BC, Standish BA, Yang VX.

Biomed Opt Express. 2012 Jul 1;3(7):1557-64. doi: 10.1364/BOE.3.001557. Epub 2012 Jun 7.

12.

In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography.

Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, Yatagai T.

Opt Express. 2007 May 14;15(10):6121-39.

PMID:
19546917
13.

Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography.

Choi DH, Yoshimura R, Ohbayashi K.

Biomed Opt Express. 2013 Nov 22;4(12):2962-87. doi: 10.1364/BOE.4.002962. eCollection 2013.

14.

Noninvasive cross-sectional imaging of incomplete crown fractures (cracks) using swept-source optical coherence tomography.

Nakajima Y, Shimada Y, Miyashin M, Takagi Y, Tagami J, Sumi Y.

Int Endod J. 2012 Oct;45(10):933-41. doi: 10.1111/j.1365-2591.2012.02052.x. Epub 2012 Apr 23.

PMID:
22519809
15.

Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography.

Lu Z, Kasaragod DK, Matcher SJ.

Biomed Opt Express. 2011 Mar 4;2(4):794-804. doi: 10.1364/BOE.2.000794.

16.

Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography.

Mansouri K, Nuyen B, N Weinreb R.

Expert Rev Med Devices. 2013 Sep;10(5):621-8. doi: 10.1586/17434440.2013.827505. Epub 2013 Aug 23. Review.

PMID:
23972075
17.

Neuronavigation and fluoroscopy-assisted subdural strip electrode positioning: a simple method to increase intraoperative accuracy of strip localization in epilepsy surgery.

Erõss L, Bagó AG, Entz L, Fabó D, Halász P, Balogh A, Fedorcsák I.

J Neurosurg. 2009 Feb;110(2):327-31. doi: 10.3171/2008.6.JNS17611.

PMID:
19012488
18.

Optical frequency domain imaging of ex vivo pulmonary resection specimens: obtaining one to one image to histopathology correlation.

Hariri LP, Applegate MB, Mino-Kenudson M, Mark EJ, Bouma BE, Tearney GJ, Suter MJ.

J Vis Exp. 2013 Jan 22;(71). pii: 3855. doi: 10.3791/3855.

19.

Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging.

Park HY, Shin HY, Park CK.

Am J Ophthalmol. 2014 Mar;157(3):550-7. doi: 10.1016/j.ajo.2013.11.008. Epub 2013 Nov 12.

PMID:
24239773
20.

Swept-source optical coherence tomography as a new tool to evaluate defects of resin-based composite restorations.

Ishibashi K, Ozawa N, Tagami J, Sumi Y.

J Dent. 2011 Aug;39(8):543-8. doi: 10.1016/j.jdent.2011.05.005. Epub 2011 May 27.

PMID:
21651956
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk