Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 153

Similar articles for PubMed (Select 22066902)

1.

The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits.

Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla FM, de Vicente A, Perez-Garcia A.

Mol Plant Microbe Interact. 2011 Dec;24(12):1540-52. doi: 10.1094/MPMI-06-11-0162.

2.

The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca.

Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A.

Mol Plant Microbe Interact. 2007 Apr;20(4):430-40.

3.

The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses.

García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A.

Microb Biotechnol. 2013 May;6(3):264-74. doi: 10.1111/1751-7915.12028. Epub 2013 Jan 10.

4.

Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca.

Romero D, de Vicente A, Olmos JL, Dávila JC, Pérez-García A.

J Appl Microbiol. 2007 Oct;103(4):969-76.

PMID:
17897200
5.

Surfactin triggers biofilm formation of Bacillus subtilis in melon phylloplane and contributes to the biocontrol activity.

Zeriouh H, de Vicente A, Pérez-García A, Romero D.

Environ Microbiol. 2014 Jul;16(7):2196-211. doi: 10.1111/1462-2920.12271. Epub 2013 Oct 6.

PMID:
24308294
7.

Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis.

Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P.

Appl Microbiol Biotechnol. 2005 Nov;69(1):29-38. Epub 2005 Oct 20.

PMID:
15742166
8.

Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24.

Grover M, Nain L, Singh SB, Saxena AK.

Curr Microbiol. 2010 Feb;60(2):99-106. doi: 10.1007/s00284-009-9508-6. Epub 2009 Sep 24.

PMID:
19777301
9.

Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens.

Arrebola E, Jacobs R, Korsten L.

J Appl Microbiol. 2010 Feb;108(2):386-95. doi: 10.1111/j.1365-2672.2009.04438.x. Epub 2009 Jun 25.

PMID:
19674188
10.

The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.

Alvarez F, Castro M, Príncipe A, Borioli G, Fischer S, Mori G, Jofré E.

J Appl Microbiol. 2012 Jan;112(1):159-74. doi: 10.1111/j.1365-2672.2011.05182.x. Epub 2011 Nov 22.

PMID:
22017648
11.

Characterization of fungal antagonistic bacilli isolated from aerial roots of banyan (Ficus benghalensis) using intact-cell MALDI-TOF mass spectrometry (ICMS).

Pathak KV, Keharia H.

J Appl Microbiol. 2013 May;114(5):1300-10. doi: 10.1111/jam.12161. Epub 2013 Mar 1.

PMID:
23387377
12.

Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis.

Sandrin C, Peypoux F, Michel G.

Biotechnol Appl Biochem. 1990 Aug;12(4):370-5.

PMID:
2119191
13.

Induction of resistance in wheat by bacterial cyclic lipopeptides.

Khong NG, Randoux B, Deravel J, Tisserant B, Tayeh Ch, Coutte F, Bourdon N, Jacques P, Reignault P.

Commun Agric Appl Biol Sci. 2013;78(3):479-87.

PMID:
25151823
14.

Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8.

Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M.

Arch Microbiol. 2012 Nov;194(11):893-9. doi: 10.1007/s00203-012-0823-0. Epub 2012 May 31.

15.

Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells.

Etchegaray A, de Castro Bueno C, de Melo IS, Tsai SM, Fiore MF, Silva-Stenico ME, de Moraes LA, Teschke O.

Arch Microbiol. 2008 Dec;190(6):611-22. doi: 10.1007/s00203-008-0409-z. Epub 2008 Jul 25.

PMID:
18654762
16.

ESI LC-MS and MS/MS characterization of antifungal cyclic lipopeptides produced by Bacillus subtilis XF-1.

Li XY, Mao ZC, Wang YH, Wu YX, He YQ, Long CL.

J Mol Microbiol Biotechnol. 2012;22(2):83-93. doi: 10.1159/000338530. Epub 2012 May 16.

PMID:
22614917
17.

Putative use of a Bacillus subtilis L194 strain for biocontrol of Phoma medicaginis in Medicago truncatula seedlings.

Ben Slimene I, Tabbene O, Djebali N, Cosette P, Schmitter JM, Jouenne T, Urdaci MC, Limam F.

Res Microbiol. 2012 Jun;163(5):388-97. doi: 10.1016/j.resmic.2012.03.004. Epub 2012 Apr 25.

PMID:
22579659
18.

Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens.

Falardeau J, Wise C, Novitsky L, Avis TJ.

J Chem Ecol. 2013 Jul;39(7):869-78. doi: 10.1007/s10886-013-0319-7. Epub 2013 Jul 16. Review.

PMID:
23888387
19.

Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease.

Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P.

Microbiol Res. 2014 Jul-Aug;169(7-8):533-40. doi: 10.1016/j.micres.2013.12.001. Epub 2013 Dec 12.

20.

Studies on lipopeptide biosynthesis by Bacillus subtilis: isolation and characterization of iturin-, surfactin+ mutants.

Feignier C, Besson F, Michel G.

FEMS Microbiol Lett. 1995 Mar 15;127(1-2):11-5.

PMID:
7737471
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk