Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 425

1.

mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

Menendez JA, Vellon L, Oliveras-Ferraros C, Cufí S, Vazquez-Martin A.

Cell Cycle. 2011 Nov 1;10(21):3658-77. doi: 10.4161/cc.10.21.18128. Epub 2011 Nov 1. Review.

PMID:
22052357
2.

Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells.

Chen T, Shen L, Yu J, Wan H, Guo A, Chen J, Long Y, Zhao J, Pei G.

Aging Cell. 2011 Oct;10(5):908-11. doi: 10.1111/j.1474-9726.2011.00722.x. Epub 2011 Jun 14.

3.

Activation of AMP-activated protein kinase (AMPK) provides a metabolic barrier to reprogramming somatic cells into stem cells.

Vazquez-Martin A, Vellon L, Quirós PM, Cufí S, Ruiz de Galarreta E, Oliveras-Ferraros C, Martin AG, Martin-Castillo B, López-Otín C, Menendez JA.

Cell Cycle. 2012 Mar 1;11(5):974-89. doi: 10.4161/cc.11.5.19450. Epub 2012 Mar 1.

PMID:
22333578
4.

The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells.

Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J.

Stem Cells. 2010 Apr;28(4):721-33. doi: 10.1002/stem.404.

5.

Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency.

Wang S, Xia P, Ye B, Huang G, Liu J, Fan Z.

Cell Stem Cell. 2013 Nov 7;13(5):617-25. doi: 10.1016/j.stem.2013.10.005.

6.

Mitochondrial fusion by pharmacological manipulation impedes somatic cell reprogramming to pluripotency: new insight into the role of mitophagy in cell stemness.

Vazquez-Martin A, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Vellon L, Menendez JA.

Aging (Albany NY). 2012 Jun;4(6):393-401.

7.

Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway.

Corominas-Faja B, Cufí S, Oliveras-Ferraros C, Cuyàs E, López-Bonet E, Lupu R, Alarcón T, Vellon L, Iglesias JM, Leis O, Martín ÁG, Vazquez-Martin A, Menendez JA.

Cell Cycle. 2013 Sep 15;12(18):3109-24. doi: 10.4161/cc.26173. Epub 2013 Aug 21.

8.

The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.

Vazquez-Martin A, Corominas-Faja B, Cufi S, Vellon L, Oliveras-Ferraros C, Menendez OJ, Joven J, Lupu R, Menendez JA.

Cell Cycle. 2013 Jan 15;12(2):207-18. doi: 10.4161/cc.23352. Epub 2012 Jan 15. Review.

9.

From growing to secreting: new roles for mTOR in aging cells.

Pani G.

Cell Cycle. 2011 Aug 1;10(15):2450-3. Epub 2011 Aug 1.

PMID:
21720215
10.

Mitochondrial regulation in pluripotent stem cells.

Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC.

Cell Metab. 2013 Sep 3;18(3):325-32. doi: 10.1016/j.cmet.2013.06.005. Epub 2013 Jul 11. Review.

11.

Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state.

Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez JM, De Vos J, Lehmann S, Lemaitre JM.

Genes Dev. 2011 Nov 1;25(21):2248-53. doi: 10.1101/gad.173922.111.

12.

Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming.

Chen CT, Hsu SH, Wei YH.

Biochim Biophys Acta. 2012 May;1820(5):571-6. doi: 10.1016/j.bbagen.2011.09.013. Epub 2011 Sep 29. Review.

PMID:
21983491
13.

The aging signature: a hallmark of induced pluripotent stem cells?

Rohani L, Johnson AA, Arnold A, Stolzing A.

Aging Cell. 2014 Feb;13(1):2-7. doi: 10.1111/acel.12182. Epub 2013 Nov 21. Review.

14.

Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation.

Yi L, Lu C, Hu W, Sun Y, Levine AJ.

Cancer Res. 2012 Nov 1;72(21):5635-45. doi: 10.1158/0008-5472.CAN-12-1451. Epub 2012 Sep 10.

15.

Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.

Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D.

Cell Stem Cell. 2010 Jan 8;6(1):71-9. doi: 10.1016/j.stem.2009.12.001. Epub 2009 Dec 31.

16.

An elaborate regulation of Mammalian target of rapamycin activity is required for somatic cell reprogramming induced by defined transcription factors.

He J, Kang L, Wu T, Zhang J, Wang H, Gao H, Zhang Y, Huang B, Liu W, Kou Z, Zhang H, Gao S.

Stem Cells Dev. 2012 Sep 20;21(14):2630-41. doi: 10.1089/scd.2012.0015. Epub 2012 May 17.

PMID:
22471963
17.

Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.

Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A.

Cell Metab. 2011 Aug 3;14(2):264-71. doi: 10.1016/j.cmet.2011.06.011.

18.

Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming.

Wu Y, Li Y, Zhang H, Huang Y, Zhao P, Tang Y, Qiu X, Ying Y, Li W, Ni S, Zhang M, Liu L, Xu Y, Zhuang Q, Luo Z, Benda C, Song H, Liu B, Lai L, Liu X, Tse HF, Bao X, Chan WY, Esteban MA, Qin B, Pei D.

Nat Cell Biol. 2015 Jun;17(6):715-25. doi: 10.1038/ncb3172. Epub 2015 May 18.

PMID:
25985393
19.

Energy metabolism in nuclear reprogramming.

Folmes CD, Nelson TJ, Terzic A.

Biomark Med. 2011 Dec;5(6):715-29. doi: 10.2217/bmm.11.87. Review.

20.

HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.

Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T, Adjaye J.

Stem Cells. 2014 Feb;32(2):364-76. doi: 10.1002/stem.1552.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk