Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

PKA-dependent regulation of Cdc25 RasGEF localization in budding yeast.

Belotti F, Tisi R, Paiardi C, Groppi S, Martegani E.

FEBS Lett. 2011 Dec 15;585(24):3914-20. doi: 10.1016/j.febslet.2011.10.032. Epub 2011 Oct 25.

2.
3.

Localization of Ras signaling complex in budding yeast.

Belotti F, Tisi R, Paiardi C, Rigamonti M, Groppi S, Martegani E.

Biochim Biophys Acta. 2012 Jul;1823(7):1208-16. doi: 10.1016/j.bbamcr.2012.04.016. Epub 2012 May 7.

4.
5.
6.

New roles for CDC25 in growth control, galactose regulation and cellular differentiation in Saccharomyces cerevisiae.

Folch-Mallol JL, Martínez LM, Casas SJ, Yang R, Martínez-Anaya C, López L, Hernández A, Nieto-Sotelo J.

Microbiology. 2004 Sep;150(Pt 9):2865-79.

PMID:
15347746
7.

Role of Sch9 in regulating Ras-cAMP signal pathway in Saccharomyces cerevisiae.

Zhang A, Shen Y, Gao W, Dong J.

FEBS Lett. 2011 Oct 3;585(19):3026-32. doi: 10.1016/j.febslet.2011.08.023. Epub 2011 Aug 27.

8.

Simulation of the Ras/cAMP/PKA pathway in budding yeast highlights the establishment of stable oscillatory states.

Pescini D, Cazzaniga P, Besozzi D, Mauri G, Amigoni L, Colombo S, Martegani E.

Biotechnol Adv. 2012 Jan-Feb;30(1):99-107. doi: 10.1016/j.biotechadv.2011.06.014. Epub 2011 Jun 29.

PMID:
21741466
9.

The budding yeast RasGEF Cdc25 reveals an unexpected nuclear localization.

Tisi R, Belotti F, Paiardi C, Brunetti F, Martegani E.

Biochim Biophys Acta. 2008 Dec;1783(12):2363-74. doi: 10.1016/j.bbamcr.2008.09.004. Epub 2008 Sep 27.

10.

In Saccharomyces cerevisiae an unbalanced level of tyrosine phosphorylation down-regulates the Ras/PKA pathway.

Magherini F, Busti S, Gamberi T, Sacco E, Raugei G, Manao G, Ramponi G, Modesti A, Vanoni M.

Int J Biochem Cell Biol. 2006 Mar;38(3):444-60. Epub 2005 Nov 2.

PMID:
16297653
11.

Feedback regulation of Ras2 guanine nucleotide exchange factor (Ras2-GEF) activity of Cdc25p by Cdc25p phosphorylation in the yeast Saccharomyces cerevisiae.

Jian D, Aili Z, Xiaojia B, Huansheng Z, Yun H.

FEBS Lett. 2010 Dec 1;584(23):4745-50. doi: 10.1016/j.febslet.2010.11.006. Epub 2010 Nov 10.

12.

Interaction between the Saccharomyces cerevisiae CDC25 gene product and mammalian ras.

Segal M, Marbach I, Engelberg D, Simchen G, Levitzki A.

J Biol Chem. 1992 Nov 15;267(32):22747-51.

13.

The overexpression of the CDC25 gene of Saccharomyces cerevisiae causes a derepression of GAL system and an increase of GAL4 transcription.

Rudoni S, Mauri I, Ceriani M, Coccetti P, Martegani E.

Int J Biochem Cell Biol. 2000 Feb;32(2):215-24.

PMID:
10687955
14.
15.

The N-terminal half of Cdc25 is essential for processing glucose signaling in Saccharomyces cerevisiae.

Gross A, Winograd S, Marbach I, Levitzki A.

Biochemistry. 1999 Oct 5;38(40):13252-62.

PMID:
10529198
16.
17.

Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding.

Lee P, Paik SM, Shin CS, Huh WK, Hahn JS.

Mol Microbiol. 2011 Feb;79(3):633-46. doi: 10.1111/j.1365-2958.2010.07471.x. Epub 2010 Dec 7.

18.
19.

Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae.

Chautard H, Jacquet M, Schoentgen F, Bureaud N, Bénédetti H.

Eukaryot Cell. 2004 Apr;3(2):459-70.

20.

The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation.

Paiardi C, Belotti F, Colombo S, Tisi R, Martegani E.

FEMS Yeast Res. 2007 Dec;7(8):1270-5. Epub 2007 Aug 29.

Items per page

Supplemental Content

Write to the Help Desk