Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development.

Ripoll JJ, Roeder AH, Ditta GS, Yanofsky MF.

Development. 2011 Dec;138(23):5167-76. doi: 10.1242/dev.073031. Epub 2011 Oct 26.

2.

The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit.

Roeder AH, Ferrándiz C, Yanofsky MF.

Curr Biol. 2003 Sep 16;13(18):1630-5.

3.

Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene.

Alonso-Cantabrana H, Ripoll JJ, Ochando I, Vera A, Ferrándiz C, Martínez-Laborda A.

Development. 2007 Jul;134(14):2663-71.

4.

The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit.

Romera-Branchat M, Ripoll JJ, Yanofsky MF, Pelaz S.

Plant J. 2013 Jan;73(1):37-49. doi: 10.1111/tpj.12010. Epub 2012 Nov 1.

5.

The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development.

Prasad K, Zhang X, Tobón E, Ambrose BA.

Plant J. 2010 Apr;62(2):203-14. doi: 10.1111/j.1365-313X.2010.04139.x. Epub 2010 Jan 18.

6.

Flower and fruit development in Arabidopsis thaliana.

Robles P, Pelaz S.

Int J Dev Biol. 2005;49(5-6):633-43. Review.

7.
8.
9.

The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element.

Dinh TT, Girke T, Liu X, Yant L, Schmid M, Chen X.

Development. 2012 Jun;139(11):1978-86. doi: 10.1242/dev.077073. Epub 2012 Apr 18.

10.

The NTT transcription factor promotes replum development in Arabidopsis fruits.

Marsch-Martínez N, Zúñiga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PB, Pablo-Villa J, Lozano-Sotomayor P, Greco R, Ballester P, Balanzá V, Kuijt SJ, Meijer AH, Pereira A, Ferrándiz C, de Folter S.

Plant J. 2014 Oct;80(1):69-81. doi: 10.1111/tpj.12617. Epub 2014 Aug 27.

11.

The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.

Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R.

Development. 1998 Apr;125(8):1509-17.

12.
13.

Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation.

Girin T, Stephenson P, Goldsack CM, Kempin SA, Perez A, Pires N, Sparrow PA, Wood TA, Yanofsky MF, Østergaard L.

Plant J. 2010 Jul;63(2):329-38. doi: 10.1111/j.1365-313X.2010.04244.x. Epub 2010 Apr 29.

14.

Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit.

González-Reig S, Ripoll JJ, Vera A, Yanofsky MF, Martínez-Laborda A.

PLoS Genet. 2012;8(11):e1003020. doi: 10.1371/journal.pgen.1003020. Epub 2012 Nov 1.

15.

Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.

Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK.

Plant Cell. 1994 Sep;6(9):1211-25.

16.

HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower.

Chen X, Liu J, Cheng Y, Jia D.

Development. 2002 Mar;129(5):1085-94.

17.

Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes.

Mühlhausen A, Lenser T, Mummenhoff K, Theißen G.

Plant J. 2013 Mar;73(5):824-35. doi: 10.1111/tpj.12079. Epub 2013 Jan 18.

18.

Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana.

Chung KS, Lee JH, Lee JS, Ahn JH.

Mol Cells. 2013 Jun;35(6):519-25. doi: 10.1007/s10059-013-0030-0. Epub 2013 Mar 18.

19.

Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.

Sundström JF, Nakayama N, Glimelius K, Irish VF.

Plant J. 2006 May;46(4):593-600.

20.
Items per page

Supplemental Content

Write to the Help Desk