Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 189


Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.

Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M, Armstrong CL, Caldo RA, Morrell JA, Lacy M, Staub JM.

Plant Physiol. 2011 Dec;157(4):1841-52. doi: 10.1104/pp.111.187898. Epub 2011 Oct 6.


Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots.

Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C.

PLoS One. 2011;6(11):e28009. doi: 10.1371/journal.pone.0028009. Epub 2011 Nov 23.


High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation.

Bi YM, Meyer A, Downs GS, Shi X, El-Kereamy A, Lukens L, Rothstein SJ.

BMC Genomics. 2014 Jan 28;15:77. doi: 10.1186/1471-2164-15-77.


Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone.

Li Z, Xu C, Li K, Yan S, Qu X, Zhang J.

BMC Plant Biol. 2012 Jun 14;12:89. doi: 10.1186/1471-2229-12-89.


The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering.

Lu HF, Dong HT, Sun CB, Qing DJ, Li N, Wu ZK, Wang ZQ, Li YZ.

Theor Appl Genet. 2011 Oct;123(6):943-58. doi: 10.1007/s00122-011-1638-0. Epub 2011 Jul 7.


Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.

Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L.

J Exp Bot. 2008;59(9):2479-97. doi: 10.1093/jxb/ern115. Epub 2008 May 23.


Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines.

O'Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC.

BMC Genomics. 2007 Dec 21;8:476.


Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.

Qing DJ, Lu HF, Li N, Dong HT, Dong DF, Li YZ.

Plant Cell Physiol. 2009 Apr;50(4):889-903. doi: 10.1093/pcp/pcp038. Epub 2009 Mar 4.


Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices.

Coll A, Nadal A, Collado R, Capellades G, Kubista M, Messeguer J, Pla M.

Plant Mol Biol. 2010 Jun;73(3):349-62. doi: 10.1007/s11103-010-9624-5. Epub 2010 Mar 27.


Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots.

Luan M, Xu M, Lu Y, Zhang Q, Zhang L, Zhang C, Fan Y, Lang Z, Wang L.

PLoS One. 2014 Mar 14;9(3):e91369. doi: 10.1371/journal.pone.0091369. eCollection 2014.


Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.

Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R.

Plant Biotechnol J. 2011 Oct;9(8):826-37. doi: 10.1111/j.1467-7652.2011.00592.x. Epub 2011 May 30.


Genome-wide identification of housekeeping genes in maize.

Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H.

Plant Mol Biol. 2014 Nov;86(4-5):543-54. doi: 10.1007/s11103-014-0246-1. Epub 2014 Sep 11.


Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase.

Beatty PH, Shrawat AK, Carroll RT, Zhu T, Good AG.

Plant Biotechnol J. 2009 Aug;7(6):562-76. doi: 10.1111/j.1467-7652.2009.00424.x. Epub 2009 Jun 8.


Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling.

Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B.

J Exp Bot. 2014 Oct;65(19):5657-71. doi: 10.1093/jxb/eru227. Epub 2014 May 26. Review.


Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U.

Plant Physiol. 2012 Nov;160(3):1384-406. doi: 10.1104/pp.112.204420. Epub 2012 Sep 12.


Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

Kant S, Bi YM, Rothstein SJ.

J Exp Bot. 2011 Feb;62(4):1499-509. doi: 10.1093/jxb/erq297. Epub 2010 Oct 6. Review.


Modification of nitrogen remobilization, grain fill and leaf senescence in maize (Zea mays) by transposon insertional mutagenesis in a protease gene.

Donnison IS, Gay AP, Thomas H, Edwards KJ, Edwards D, James CL, Thomas AM, Ougham HJ.

New Phytol. 2007;173(3):481-94.


Transcriptional profile of maize roots under acid soil growth.

Mattiello L, Kirst M, da Silva FR, Jorge RA, Menossi M.

BMC Plant Biol. 2010 Sep 9;10:196. doi: 10.1186/1471-2229-10-196.


Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: agronomic, physiological and molecular aspects.

Martin A, Belastegui-Macadam X, Quilleré I, Floriot M, Valadier MH, Pommel B, Andrieu B, Donnison I, Hirel B.

New Phytol. 2005 Aug;167(2):483-92.


Foliar herbivory triggers local and long distance defense responses in maize.

Ankala A, Kelley RY, Rowe DE, Williams WP, Luthe DS.

Plant Sci. 2013 Feb;199-200:103-12. doi: 10.1016/j.plantsci.2012.09.017. Epub 2012 Nov 9.

Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk