Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 447

Similar articles for PubMed (Select 21961046)

1.

Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells.

Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, Hjelmeland AB, Huang AY, Rich JN.

PLoS One. 2011;6(9):e24807. doi: 10.1371/journal.pone.0024807. Epub 2011 Sep 22.

2.

Brain tumor stem cells from an adenoid glioblastoma multiforme.

Oka N, Soeda A, Noda S, Iwama T.

Neurol Med Chir (Tokyo). 2009 Apr;49(4):146-50; discussion 150-1.

3.

Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression.

Gambelli F, Sasdelli F, Manini I, Gambarana C, Oliveri G, Miracco C, Sorrentino V.

Cell Biol Int. 2012 Jan;36(1):29-38. doi: 10.1042/CBI20110013.

PMID:
21916848
4.

Cancer stem cell-specific scavenger receptor 36 drives glioblastoma progression.

Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, Wu Q, Flavahan W, Levison B, Johansen ML, Schmitt D, Neltner JM, Huang P, Ren B, Sloan AE, Silverstein RL, Gladson CL, DiDonato JA, Brown JM, McIntyre T, Hazen SL, Horbinski C, Rich JN, Lathia JD.

Stem Cells. 2014 Jul;32(7):1746-58. doi: 10.1002/stem.1716.

PMID:
24737733
5.

Glioblastoma cancer stem cells--from concept to clinical application.

Stopschinski BE, Beier CP, Beier D.

Cancer Lett. 2013 Sep 10;338(1):32-40. doi: 10.1016/j.canlet.2012.05.033. Epub 2012 Jun 2. Review.

PMID:
22668828
6.

NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts.

Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG.

Stem Cells. 2010 Jan;28(1):5-16. doi: 10.1002/stem.254.

7.

Cancer stem cells are enriched in the side population cells in a mouse model of glioma.

Harris MA, Yang H, Low BE, Mukherjee J, Guha A, Bronson RT, Shultz LD, Israel MA, Yun K.

Cancer Res. 2008 Dec 15;68(24):10051-9. doi: 10.1158/0008-5472.CAN-08-0786. Erratum in: Cancer Res. 2009 Jul 15;69(14):6005. Mukherje, Joydeep [corrected to Mukherjee, Joydeep].

8.

The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells.

Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ.

Neoplasia. 2012 Feb;14(2):150-8.

9.

Comparison between cells and cancer stem-like cells isolated from glioblastoma and astrocytoma on expression of anti-apoptotic and multidrug resistance-associated protein genes.

Jin F, Zhao L, Zhao HY, Guo SG, Feng J, Jiang XB, Zhang SL, Wei YJ, Fu R, Zhao JS.

Neuroscience. 2008 Jun 23;154(2):541-50. doi: 10.1016/j.neuroscience.2008.03.054. Epub 2008 Apr 1.

PMID:
18462887
10.

Partial biological characterization of cancer stem-like cell line (WJ(2)) of human glioblastoma multiforme.

Wang J, Wang X, Jiang S, Lin P, Zhang J, Wu Y, Xiong Z, Ren JJ, Yang H.

Cell Mol Neurobiol. 2008 Nov;28(7):991-1003. doi: 10.1007/s10571-008-9273-2. Epub 2008 Mar 19.

PMID:
18350379
11.
12.

The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer.

Tirino V, Camerlingo R, Franco R, Malanga D, La Rocca A, Viglietto G, Rocco G, Pirozzi G.

Eur J Cardiothorac Surg. 2009 Sep;36(3):446-53. doi: 10.1016/j.ejcts.2009.03.063. Epub 2009 May 22.

PMID:
19464919
13.

Glioblastoma and stem cells.

Altaner C.

Neoplasma. 2008;55(5):369-74. Review.

PMID:
18665745
14.

Cancer stem cell labeling using poly(L-lysine)-modified iron oxide nanoparticles.

Wang X, Wei F, Liu A, Wang L, Wang JC, Ren L, Liu W, Tu Q, Li L, Wang J.

Biomaterials. 2012 May;33(14):3719-32. doi: 10.1016/j.biomaterials.2012.01.058. Epub 2012 Feb 18.

PMID:
22342710
15.

Using CD133 positive U251 glioblastoma stem cells to establish nude mice model of transplanted tumor.

Jin F, Gao C, Zhao L, Zhang H, Wang HT, Shao T, Zhang SL, Wei YJ, Jiang XB, Zhou YP, Zhao HY.

Brain Res. 2011 Jan 12;1368:82-90. doi: 10.1016/j.brainres.2010.10.051. Epub 2010 Oct 21.

PMID:
20971095
16.

Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis.

Botchkina IL, Rowehl RA, Rivadeneira DE, Karpeh MS Jr, Crawford H, Dufour A, Ju J, Wang Y, Leyfman Y, Botchkina GI.

Cancer Genomics Proteomics. 2009 Jan-Feb;6(1):19-29.

17.

Expansion of CD133(+) colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery.

Fang DD, Kim YJ, Lee CN, Aggarwal S, McKinnon K, Mesmer D, Norton J, Birse CE, He T, Ruben SM, Moore PA.

Br J Cancer. 2010 Apr 13;102(8):1265-75. doi: 10.1038/sj.bjc.6605610. Epub 2010 Mar 23.

18.

CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays.

He J, Liu Y, Zhu T, Zhu J, Dimeco F, Vescovi AL, Heth JA, Muraszko KM, Fan X, Lubman DM.

Mol Cell Proteomics. 2012 Jun;11(6):M111.010744. doi: 10.1074/mcp.M111.010744. Epub 2011 Dec 27.

19.

CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles.

Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP.

Cancer Res. 2007 May 1;67(9):4010-5.

20.

Identification and characterization of tumorigenic liver cancer stem/progenitor cells.

Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY.

Gastroenterology. 2007 Jun;132(7):2542-56. Epub 2007 Apr 15.

PMID:
17570225
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk