Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Short separation channel location impacts the performance of short channel regression in NIRS.

Gagnon L, Cooper RJ, Yücel MA, Perdue KL, Greve DN, Boas DA.

Neuroimage. 2012 Feb 1;59(3):2518-28. doi: 10.1016/j.neuroimage.2011.08.095. Epub 2011 Sep 8.

2.

Further improvement in reducing superficial contamination in NIRS using double short separation measurements.

Gagnon L, Yücel MA, Boas DA, Cooper RJ.

Neuroimage. 2014 Jan 15;85 Pt 1:127-35. doi: 10.1016/j.neuroimage.2013.01.073. Epub 2013 Feb 9.

3.

Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling.

Gagnon L, Perdue K, Greve DN, Goldenholz D, Kaskhedikar G, Boas DA.

Neuroimage. 2011 Jun 1;56(3):1362-71. doi: 10.1016/j.neuroimage.2011.03.001. Epub 2011 Mar 6.

4.

Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.

Funane T, Atsumori H, Katura T, Obata AN, Sato H, Tanikawa Y, Okada E, Kiguchi M.

Neuroimage. 2014 Jan 15;85 Pt 1:150-65. doi: 10.1016/j.neuroimage.2013.02.026. Epub 2013 Feb 22.

PMID:
23439443
5.

RLS adaptive filtering for physiological interference reduction in NIRS brain activity measurement: a Monte Carlo study.

Zhang Y, Sun JW, Rolfe P.

Physiol Meas. 2012 Jun;33(6):925-42. doi: 10.1088/0967-3334/33/6/925. Epub 2012 May 3.

PMID:
22551687
6.

Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.

Tian F, Liu H.

Neuroimage. 2014 Jan 15;85 Pt 1:166-80. doi: 10.1016/j.neuroimage.2013.07.016. Epub 2013 Jul 14.

7.

The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy.

Kirilina E, Jelzow A, Heine A, Niessing M, Wabnitz H, Brühl R, Ittermann B, Jacobs AM, Tachtsidis I.

Neuroimage. 2012 May 15;61(1):70-81. doi: 10.1016/j.neuroimage.2012.02.074. Epub 2012 Mar 9.

8.

Cerebral near infrared spectroscopy: emitter-detector separation must be increased.

Germon TJ, Evans PD, Barnett NJ, Wall P, Manara AR, Nelson RJ.

Br J Anaesth. 1999 Jun;82(6):831-7.

9.

Scalp and skull influence on near infrared photon propagation in the Colin27 brain template.

Strangman GE, Zhang Q, Li Z.

Neuroimage. 2014 Jan 15;85 Pt 1:136-49. doi: 10.1016/j.neuroimage.2013.04.090. Epub 2013 May 7.

PMID:
23660029
10.

Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS.

Saager RB, Telleri NL, Berger AJ.

Neuroimage. 2011 Apr 15;55(4):1679-85. doi: 10.1016/j.neuroimage.2011.01.043. Epub 2011 Jan 20.

PMID:
21256223
11.

A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans.

Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA.

Neuroimage. 2006 Jan 15;29(2):368-82. Epub 2005 Nov 21.

12.

Single-trial reconstruction of finger-pinch forces from human motor-cortical activation measured by near-infrared spectroscopy (NIRS).

Nambu I, Osu R, Sato MA, Ando S, Kawato M, Naito E.

Neuroimage. 2009 Aug 15;47(2):628-37. doi: 10.1016/j.neuroimage.2009.04.050. Epub 2009 Apr 22.

PMID:
19393320
13.

Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task.

Takahashi T, Takikawa Y, Kawagoe R, Shibuya S, Iwano T, Kitazawa S.

Neuroimage. 2011 Aug 1;57(3):991-1002. doi: 10.1016/j.neuroimage.2011.05.012. Epub 2011 May 10.

PMID:
21600294
14.

Separation of fNIRS signals into functional and systemic components based on differences in hemodynamic modalities.

Yamada T, Umeyama S, Matsuda K.

PLoS One. 2012;7(11):e50271. doi: 10.1371/journal.pone.0050271. Epub 2012 Nov 19.

15.

Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

Uga M, Saito T, Sano T, Yokota H, Oguro K, Rizki EE, Mizutani T, Katura T, Dan I, Watanabe E.

Neuroimage. 2014 May 1;91:138-45. doi: 10.1016/j.neuroimage.2013.12.062. Epub 2014 Jan 11.

PMID:
24418508
16.

The utility of near-infrared spectroscopy in the regression of low-frequency physiological noise from functional magnetic resonance imaging data.

Cooper RJ, Gagnon L, Goldenholz DM, Boas DA, Greve DN.

Neuroimage. 2012 Feb 15;59(4):3128-38. doi: 10.1016/j.neuroimage.2011.11.028. Epub 2011 Nov 17.

17.

Development, set-up and first results for a one-channel near-infrared spectroscopy system.

Bauernfeind G, Leeb R, Wriessnegger SC, Pfurtscheller G.

Biomed Tech (Berl). 2008 Feb;53(1):36-43. doi: 10.1515/BMT.2008.005.

PMID:
18251709
18.

Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects.

Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, van der Sluijs MC, van Erning LJ, Thijssen HO, Oeseburg B, Hoefnagels WH, Jansen RW.

Hum Brain Mapp. 2002 May;16(1):14-23.

PMID:
11870923
19.

Wavelet minimum description length detrending for near-infrared spectroscopy.

Jang KE, Tak S, Jung J, Jang J, Jeong Y, Ye JC.

J Biomed Opt. 2009 May-Jun;14(3):034004. doi: 10.1117/1.3127204.

PMID:
19566297
Items per page

Supplemental Content

Write to the Help Desk