Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 378

1.

An in situ forming collagen-PEG hydrogel for tissue regeneration.

Sargeant TD, Desai AP, Banerjee S, Agawu A, Stopek JB.

Acta Biomater. 2012 Jan;8(1):124-32. doi: 10.1016/j.actbio.2011.07.028. Epub 2011 Aug 26.

PMID:
21911086
[PubMed - indexed for MEDLINE]
2.

Robust and semi-interpenetrating hydrogels from poly(ethylene glycol) and collagen for elastomeric tissue scaffolds.

Chan BK, Wippich CC, Wu CJ, Sivasankar PM, Schmidt G.

Macromol Biosci. 2012 Nov;12(11):1490-501. doi: 10.1002/mabi.201200234. Epub 2012 Oct 15.

PMID:
23070957
[PubMed - indexed for MEDLINE]
3.

Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.

Atzet S, Curtin S, Trinh P, Bryant S, Ratner B.

Biomacromolecules. 2008 Dec;9(12):3370-7. doi: 10.1021/bm800686h.

PMID:
19061434
[PubMed - indexed for MEDLINE]
Free PMC Article
4.

PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering.

Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M.

Biomaterials. 2008 Oct;29(29):3960-72. doi: 10.1016/j.biomaterials.2008.06.017. Epub 2008 Jul 21.

PMID:
18639928
[PubMed - indexed for MEDLINE]
5.

Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering.

Grover GN, Rao N, Christman KL.

Nanotechnology. 2014 Jan 10;25(1):014011. doi: 10.1088/0957-4484/25/1/014011. Epub 2013 Dec 11.

PMID:
24334615
[PubMed - indexed for MEDLINE]
6.

Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.

Frith JE, Menzies DJ, Cameron AR, Ghosh P, Whitehead DL, Gronthos S, Zannettino AC, Cooper-White JJ.

Biomaterials. 2014 Jan;35(4):1150-62. doi: 10.1016/j.biomaterials.2013.10.056. Epub 2013 Nov 8.

PMID:
24215733
[PubMed - indexed for MEDLINE]
7.

Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering.

Temenoff JS, Athanasiou KA, LeBaron RG, Mikos AG.

J Biomed Mater Res. 2002 Mar 5;59(3):429-37.

PMID:
11774300
[PubMed - indexed for MEDLINE]
8.

Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering.

DeKosky BJ, Dormer NH, Ingavle GC, Roatch CH, Lomakin J, Detamore MS, Gehrke SH.

Tissue Eng Part C Methods. 2010 Dec;16(6):1533-42. doi: 10.1089/ten.tec.2009.0761. Epub 2010 Jul 13.

PMID:
20626274
[PubMed - indexed for MEDLINE]
Free PMC Article
9.

Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.

Dhariwala B, Hunt E, Boland T.

Tissue Eng. 2004 Sep-Oct;10(9-10):1316-22.

PMID:
15588392
[PubMed - indexed for MEDLINE]
10.

Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels.

Roberts JJ, Earnshaw A, Ferguson VL, Bryant SJ.

J Biomed Mater Res B Appl Biomater. 2011 Oct;99(1):158-69. doi: 10.1002/jbm.b.31883. Epub 2011 Jun 28.

PMID:
21714081
[PubMed - indexed for MEDLINE]
11.

Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering.

Chen Y, Bilgen B, Pareta RA, Myles AJ, Fenniri H, Ciombor DM, Aaron RK, Webster TJ.

Tissue Eng Part C Methods. 2010 Dec;16(6):1233-43. doi: 10.1089/ten.TEC.2009.0400. Epub 2010 Apr 12.

PMID:
20184414
[PubMed - indexed for MEDLINE]
12.

Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.

Brink KS, Yang PJ, Temenoff JS.

Acta Biomater. 2009 Feb;5(2):570-9. doi: 10.1016/j.actbio.2008.09.015. Epub 2008 Oct 4.

PMID:
18948068
[PubMed - indexed for MEDLINE]
13.

In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels.

Shin H, Quinten Ruhé P, Mikos AG, Jansen JA.

Biomaterials. 2003 Aug;24(19):3201-11.

PMID:
12763447
[PubMed - indexed for MEDLINE]
14.

Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.

Roberts JJ, Nicodemus GD, Greenwald EC, Bryant SJ.

Clin Orthop Relat Res. 2011 Oct;469(10):2725-34. doi: 10.1007/s11999-011-1823-0.

PMID:
21347817
[PubMed - indexed for MEDLINE]
Free PMC Article
15.

Mechanomimetic hydrogels for vocal fold lamina propria regeneration.

Kutty JK, Webb K.

J Biomater Sci Polym Ed. 2009;20(5-6):737-56. doi: 10.1163/156856209X426763.

PMID:
19323887
[PubMed - indexed for MEDLINE]
16.

Development of a biostable replacement for PEGDA hydrogels.

Browning MB, Cosgriff-Hernandez E.

Biomacromolecules. 2012 Mar 12;13(3):779-86. doi: 10.1021/bm201707z. Epub 2012 Feb 22.

PMID:
22324325
[PubMed - indexed for MEDLINE]
17.

Effect of drying history on swelling properties and cell attachment to oligo(poly(ethylene glycol) fumarate) hydrogels for guided tissue regeneration applications.

Temenoff JS, Steinbis ES, Mikos AG.

J Biomater Sci Polym Ed. 2003;14(9):989-1004.

PMID:
14661875
[PubMed - indexed for MEDLINE]
18.

Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.

Almany L, Seliktar D.

Biomaterials. 2005 May;26(15):2467-77.

PMID:
15585249
[PubMed - indexed for MEDLINE]
19.

Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation.

Patel PN, Gobin AS, West JL, Patrick CW Jr.

Tissue Eng. 2005 Sep-Oct;11(9-10):1498-505.

PMID:
16259604
[PubMed - indexed for MEDLINE]
20.

Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.

Namba RM, Cole AA, Bjugstad KB, Mahoney MJ.

Acta Biomater. 2009 Jul;5(6):1884-97. doi: 10.1016/j.actbio.2009.01.036. Epub 2009 Feb 1.

PMID:
19250891
[PubMed - indexed for MEDLINE]

Display Settings:

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk