Format
Items per page
Sort by

Send to:

Choose Destination

Results: 1 to 20 of 251

Similar articles for PubMed (Select 21854807)

1.

Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease.

Zhu L, George S, Schmidt MF, Al-Gharabli SI, Rademann J, Hilgenfeld R.

Antiviral Res. 2011 Nov;92(2):204-12. doi: 10.1016/j.antiviral.2011.08.001. Epub 2011 Aug 11.

PMID:
21854807
3.

Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus.

Goetz DH, Choe Y, Hansell E, Chen YT, McDowell M, Jonsson CB, Roush WR, McKerrow J, Craik CS.

Biochemistry. 2007 Jul 31;46(30):8744-52. Epub 2007 Jul 3.

PMID:
17605471
4.

Insights into cleavage specificity from the crystal structure of foot-and-mouth disease virus 3C protease complexed with a peptide substrate.

Zunszain PA, Knox SR, Sweeney TR, Yang J, Roqué-Rosell N, Belsham GJ, Leatherbarrow RJ, Curry S.

J Mol Biol. 2010 Jan 15;395(2):375-89. doi: 10.1016/j.jmb.2009.10.048. Epub 2009 Oct 31.

PMID:
19883658
5.

Application of bioinformatics in search for cleavable peptides of SARS-CoV M(pro) and chemical modification of octapeptides.

Du Q, Wang S, Jiang Z, Gao W, Li Y, Wei D, Chou KC.

Med Chem. 2005 May;1(3):209-13.

PMID:
16787316
6.

Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease.

Lu IL, Mahindroo N, Liang PH, Peng YH, Kuo CJ, Tsai KC, Hsieh HP, Chao YS, Wu SY.

J Med Chem. 2006 Aug 24;49(17):5154-61.

PMID:
16913704
7.

Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease.

Paasche A, Zipper A, Schäfer S, Ziebuhr J, Schirmeister T, Engels B.

Biochemistry. 2014 Sep 23;53(37):5930-46. doi: 10.1021/bi400604t. Epub 2014 Sep 7.

PMID:
25196915
8.

Mechanism of the maturation process of SARS-CoV 3CL protease.

Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, Shr HL, Chang GG, Wang AH, Liang PH.

J Biol Chem. 2005 Sep 2;280(35):31257-66. Epub 2005 Mar 23.

9.

Drug design targeting the main protease, the Achilles' heel of coronaviruses.

Yang H, Bartlam M, Rao Z.

Curr Pharm Des. 2006;12(35):4573-90. Review.

PMID:
17168763
10.

Molecular docking identifies the binding of 3-chloropyridine moieties specifically to the S1 pocket of SARS-CoV Mpro.

Niu C, Yin J, Zhang J, Vederas JC, James MN.

Bioorg Med Chem. 2008 Jan 1;16(1):293-302. Epub 2007 Sep 22.

PMID:
17931870
11.

Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease.

Shao YM, Yang WB, Kuo TH, Tsai KC, Lin CH, Yang AS, Liang PH, Wong CH.

Bioorg Med Chem. 2008 Apr 15;16(8):4652-60. doi: 10.1016/j.bmc.2008.02.040. Epub 2008 Feb 15.

PMID:
18329272
12.
13.

A mechanistic view of enzyme inhibition and peptide hydrolysis in the active site of the SARS-CoV 3C-like peptidase.

Yin J, Niu C, Cherney MM, Zhang J, Huitema C, Eltis LD, Vederas JC, James MN.

J Mol Biol. 2007 Aug 24;371(4):1060-74. Epub 2007 Jun 8.

PMID:
17599357
14.

A structural view of the inactivation of the SARS coronavirus main proteinase by benzotriazole esters.

Verschueren KH, Pumpor K, Anemüller S, Chen S, Mesters JR, Hilgenfeld R.

Chem Biol. 2008 Jun;15(6):597-606. doi: 10.1016/j.chembiol.2008.04.011.

15.

Evaluation of peptide-aldehyde inhibitors using R188I mutant of SARS 3CL protease as a proteolysis-resistant mutant.

Akaji K, Konno H, Onozuka M, Makino A, Saito H, Nosaka K.

Bioorg Med Chem. 2008 Nov 1;16(21):9400-8. doi: 10.1016/j.bmc.2008.09.057. Epub 2008 Sep 26.

PMID:
18845442
16.

Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease.

Wu CG, Cheng SC, Chen SC, Li JY, Fang YH, Chen YH, Chou CY.

Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):747-55. doi: 10.1107/S0907444913001315. Epub 2013 Apr 11.

PMID:
23633583
17.

Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase.

Lee TW, Cherney MM, Liu J, James KE, Powers JC, Eltis LD, James MN.

J Mol Biol. 2007 Feb 23;366(3):916-32. Epub 2006 Dec 2.

PMID:
17196984
18.

Insight into the activity of SARS main protease: Molecular dynamics study of dimeric and monomeric form of enzyme.

Zheng K, Ma G, Zhou J, Zen M, Zhao W, Jiang Y, Yu Q, Feng J.

Proteins. 2007 Feb 1;66(2):467-79.

PMID:
17083088
19.

Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors.

Lee CC, Kuo CJ, Hsu MF, Liang PH, Fang JM, Shie JJ, Wang AH.

FEBS Lett. 2007 Nov 27;581(28):5454-8. Epub 2007 Nov 5.

20.

Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide.

Lee TW, Cherney MM, Huitema C, Liu J, James KE, Powers JC, Eltis LD, James MN.

J Mol Biol. 2005 Nov 11;353(5):1137-51. Epub 2005 Sep 27.

PMID:
16219322
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk