Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 290

1.

A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells.

Libault M, Govindarajulu M, Berg RH, Ong YT, Puricelli K, Taylor CG, Xu D, Stacey G.

Mol Plant Microbe Interact. 2011 Sep;24(9):1051-60. doi: 10.1094/MPMI-12-10-0281.

2.

Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection.

Libault M, Farmer A, Brechenmacher L, Drnevich J, Langley RJ, Bilgin DD, Radwan O, Neece DJ, Clough SJ, May GD, Stacey G.

Plant Physiol. 2010 Feb;152(2):541-52. doi: 10.1104/pp.109.148379. Epub 2009 Nov 20.

3.

Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development.

Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger RE, Taylor CG, Xu D, Nguyen HT, Stacey G.

Plant Physiol. 2009 Nov;151(3):1207-20. doi: 10.1104/pp.109.144030. Epub 2009 Sep 15.

4.

Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation.

Reid DE, Ferguson BJ, Gresshoff PM.

Mol Plant Microbe Interact. 2011 May;24(5):606-18. doi: 10.1094/MPMI-09-10-0207.

5.

A soybean acyl carrier protein, GmACP, is important for root nodule symbiosis.

Wang J, Tóth K, Tanaka K, Nguyen CT, Yan Z, Brechenmacher L, Dahmen J, Chen M, Thelen JJ, Qiu L, Stacey G.

Mol Plant Microbe Interact. 2014 May;27(5):415-23. doi: 10.1094/MPMI-09-13-0269-R.

6.

14-3-3 proteins SGF14c and SGF14l play critical roles during soybean nodulation.

Radwan O, Wu X, Govindarajulu M, Libault M, Neece DJ, Oh MH, Berg RH, Stacey G, Taylor CG, Huber SC, Clough SJ.

Plant Physiol. 2012 Dec;160(4):2125-36. doi: 10.1104/pp.112.207027. Epub 2012 Oct 11.

7.

Soybean ureide transporters play a critical role in nodule development, function and nitrogen export.

Collier R, Tegeder M.

Plant J. 2012 Nov;72(3):355-67. doi: 10.1111/j.1365-313X.2012.05086.x. Epub 2012 Aug 9.

8.

Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis.

Jitacksorn S, Sadowsky MJ.

Appl Environ Microbiol. 2008 Jun;74(12):3749-56. doi: 10.1128/AEM.02939-07. Epub 2008 Apr 25.

9.

The promoters of two isoflavone synthase genes respond differentially to nodulation and defense signals in transgenic soybean roots.

Subramanian S, Hu X, Lu G, Odelland JT, Yu O.

Plant Mol Biol. 2004 Mar;54(5):623-39.

PMID:
15356384
10.

A thaumatin-like protein, Rj4, controls nodule symbiotic specificity in soybean.

Hayashi M, Shiro S, Kanamori H, Mori-Hosokawa S, Sasaki-Yamagata H, Sayama T, Nishioka M, Takahashi M, Ishimoto M, Katayose Y, Kaga A, Harada K, Kouchi H, Saeki Y, Umehara Y.

Plant Cell Physiol. 2014 Sep;55(9):1679-89. doi: 10.1093/pcp/pcu099. Epub 2014 Jul 23.

PMID:
25059584
11.

Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots.

Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ.

Plant Biotechnol J. 2012 Oct;10(8):995-1010. doi: 10.1111/j.1467-7652.2012.00729.x. Epub 2012 Aug 2.

12.

An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.

Delmotte N, Ahrens CH, Knief C, Qeli E, Koch M, Fischer HM, Vorholt JA, Hennecke H, Pessi G.

Proteomics. 2010 Apr;10(7):1391-400. doi: 10.1002/pmic.200900710.

PMID:
20104621
13.

Transcriptional analysis of genes involved in nodulation in soybean roots inoculated with Bradyrhizobium japonicum strain CPAC 15.

Carvalho GA, Batista JS, Marcelino-Guimarães FC, Nascimento LC, Hungria M.

BMC Genomics. 2013 Mar 6;14:153. doi: 10.1186/1471-2164-14-153.

14.

Transcription profiling of soybean nodulation by Bradyrhizobium japonicum.

Brechenmacher L, Kim MY, Benitez M, Li M, Joshi T, Calla B, Lee MP, Libault M, Vodkin LO, Xu D, Lee SH, Clough SJ, Stacey G.

Mol Plant Microbe Interact. 2008 May;21(5):631-45. doi: 10.1094/MPMI-21-5-0631.

15.

Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum.

Nguyen TH, Brechenmacher L, Aldrich JT, Clauss TR, Gritsenko MA, Hixson KK, Libault M, Tanaka K, Yang F, Yao Q, Pasa-Tolić L, Xu D, Nguyen HT, Stacey G.

Mol Cell Proteomics. 2012 Nov;11(11):1140-55. doi: 10.1074/mcp.M112.018028. Epub 2012 Jul 25.

16.
17.

Mitigation of Cu stress by legume-Rhizobium symbiosis in white lupin and soybean plants.

Sánchez-Pardo B, Zornoza P.

Ecotoxicol Environ Saf. 2014 Apr;102:1-5. doi: 10.1016/j.ecoenv.2014.01.016. Epub 2014 Jan 31.

PMID:
24580814
18.

Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions.

Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, Gyaneshwar P.

Mol Plant Microbe Interact. 2011 Apr;24(4):451-7. doi: 10.1094/MPMI-08-10-0184.

19.

Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum.

Brechenmacher L, Lei Z, Libault M, Findley S, Sugawara M, Sadowsky MJ, Sumner LW, Stacey G.

Plant Physiol. 2010 Aug;153(4):1808-22. doi: 10.1104/pp.110.157800. Epub 2010 Jun 9.

20.

Improved soybean root association of N-starved Bradyrhizobium japonicum.

López-García SL, Vázquez TE, Favelukes G, Lodeiro AR.

J Bacteriol. 2001 Dec;183(24):7241-52.

Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk