Format
Items per page
Sort by

Send to:

Choose Destination

Links from PubMed

Items: 1 to 20 of 167

1.

Specialisation of the venom gland proteome in predatory cone snails reveals functional diversification of the conotoxin biosynthetic pathway.

Safavi-Hemami H, Siero WA, Gorasia DG, Young ND, Macmillan D, Williamson NA, Purcell AW.

J Proteome Res. 2011 Sep 2;10(9):3904-19. doi: 10.1021/pr1012976. Epub 2011 Aug 11.

PMID:
21707029
2.

PPIase is associated with the diversity of conotoxins from cone snail venom glands.

Wang L, Tang W, Wang X, Chen Y, Wu Y, Qiang Y, Feng Y, Ren Z, Chen S, Xu A.

Biochimie. 2015 May;112:129-38. doi: 10.1016/j.biochi.2015.02.024. Epub 2015 Mar 11.

PMID:
25769415
3.

Modulation of conotoxin structure and function is achieved through a multienzyme complex in the venom glands of cone snails.

Safavi-Hemami H, Gorasia DG, Steiner AM, Williamson NA, Karas JA, Gajewiak J, Olivera BM, Bulaj G, Purcell AW.

J Biol Chem. 2012 Oct 5;287(41):34288-303. doi: 10.1074/jbc.M112.366781. Epub 2012 Aug 13.

4.

Identification of Conus peptidylprolyl cis-trans isomerases (PPIases) and assessment of their role in the oxidative folding of conotoxins.

Safavi-Hemami H, Bulaj G, Olivera BM, Williamson NA, Purcell AW.

J Biol Chem. 2010 Apr 23;285(17):12735-46. doi: 10.1074/jbc.M109.078691. Epub 2010 Feb 10.

5.

Novel alpha-conotoxins identified by gene sequencing from cone snails native to Hainan, and their sequence diversity.

Luo S, Zhangsun D, Zhang B, Quan Y, Wu Y.

J Pept Sci. 2006 Nov;12(11):693-704.

PMID:
16981242
6.

Proteomic analysis provides insights on venom processing in Conus textile.

Tayo LL, Lu B, Cruz LJ, Yates JR 3rd.

J Proteome Res. 2010 May 7;9(5):2292-301. doi: 10.1021/pr901032r.

7.
8.

Molecular cloning, expression and characterization of protein disulfide isomerase from Conus marmoreus.

Wang ZQ, Han YH, Shao XX, Chi CW, Guo ZY.

FEBS J. 2007 Sep;274(18):4778-87. Epub 2007 Aug 14.

9.

Embryonic toxin expression in the cone snail Conus victoriae: primed to kill or divergent function?

Safavi-Hemami H, Siero WA, Kuang Z, Williamson NA, Karas JA, Page LR, MacMillan D, Callaghan B, Kompella SN, Adams DJ, Norton RS, Purcell AW.

J Biol Chem. 2011 Jun 24;286(25):22546-57. doi: 10.1074/jbc.M110.217703. Epub 2011 Apr 19.

10.

Conotoxins and the posttranslational modification of secreted gene products.

Buczek O, Bulaj G, Olivera BM.

Cell Mol Life Sci. 2005 Dec;62(24):3067-79. Review.

PMID:
16314929
11.

Combined proteomic and transcriptomic interrogation of the venom gland of Conus geographus uncovers novel components and functional compartmentalization.

Safavi-Hemami H, Hu H, Gorasia DG, Bandyopadhyay PK, Veith PD, Young ND, Reynolds EC, Yandell M, Olivera BM, Purcell AW.

Mol Cell Proteomics. 2014 Apr;13(4):938-53. doi: 10.1074/mcp.M113.031351. Epub 2014 Jan 29.

12.

Identification of six novel T-1 conotoxins from Conus pulicarius by molecular cloning.

Peng C, Wu X, Han Y, Yuan D, Chi C, Wang C.

Peptides. 2007 Nov;28(11):2116-24. Epub 2007 Sep 4.

PMID:
17933431
13.

Analysis of expressed sequence tags from the venom ducts of Conus striatus: focusing on the expression profile of conotoxins.

Pi C, Liu Y, Peng C, Jiang X, Liu J, Xu B, Yu X, Yu Y, Jiang X, Wang L, Dong M, Chen S, Xu AL.

Biochimie. 2006 Feb;88(2):131-40. Epub 2005 Sep 8.

PMID:
16183187
14.

Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach.

Violette A, Biass D, Dutertre S, Koua D, Piquemal D, Pierrat F, Stöcklin R, Favreau P.

J Proteomics. 2012 Sep 18;75(17):5215-25. doi: 10.1016/j.jprot.2012.06.001. Epub 2012 Jun 13.

PMID:
22705119
15.

High molecular weight components of the injected venom of fish-hunting cone snails target the vascular system.

Safavi-Hemami H, Möller C, Marí F, Purcell AW.

J Proteomics. 2013 Oct 8;91:97-105. doi: 10.1016/j.jprot.2013.07.007. Epub 2013 Jul 19.

PMID:
23872086
16.

Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks.

Lavergne V, Harliwong I, Jones A, Miller D, Taft RJ, Alewood PF.

Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3782-91. doi: 10.1073/pnas.1501334112. Epub 2015 Jul 6. Erratum in: Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):E6253.

17.

High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors.

Terrat Y, Biass D, Dutertre S, Favreau P, Remm M, Stöcklin R, Piquemal D, Ducancel F.

Toxicon. 2012 Jan;59(1):34-46. doi: 10.1016/j.toxicon.2011.10.001. Epub 2011 Nov 6.

PMID:
22079299
18.

Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom.

Dutertre S, Jin AH, Kaas Q, Jones A, Alewood PF, Lewis RJ.

Mol Cell Proteomics. 2013 Feb;12(2):312-29. doi: 10.1074/mcp.M112.021469. Epub 2012 Nov 14.

19.

Identification of a novel class of conotoxins defined as V-conotoxins with a unique cysteine pattern and signal peptide sequence.

Peng C, Liu L, Shao X, Chi C, Wang C.

Peptides. 2008 Jun;29(6):985-91. doi: 10.1016/j.peptides.2008.01.007. Epub 2008 Jan 19.

PMID:
18304695
20.

A novel M-superfamily conotoxin with a unique motif from Conus vexillum.

Jiang H, Wang CZ, Xu CQ, Fan CX, Dai XD, Chen JS, Chi CW.

Peptides. 2006 Apr;27(4):682-9. Epub 2005 Sep 21.

PMID:
16181706
Format
Items per page
Sort by

Send to:

Choose Destination

Supplemental Content

Write to the Help Desk